Кадмий: влияние на организм человека. Отравление тяжелыми металлами

В 1968 г. в одном известном журнале появилась заметка, которая называлась «Кадмий и сердце». В ней говорилось, что доктор Кэррол - сотрудник службы здравоохранения США - обнаружил зависимость между содержанием кадмия в атмосфере и частотой смертельных случаев от сердечно-сосудистых заболеваний. Если, скажем, в городе А содержание кадмия в воздухе больше, чем в городе Б, то и сердечники города А умирают раньше, чем если бы они жили в городе Б. Такой вывод Кэррол сделал, проанализировав данные по 28 городам. Между прочим, в группе А оказались такие центры, как Нью-Йорк, Чикаго, Филадельфия...
Так в очередной раз предъявили обвинение в отравительстве элементу, открытому в аптечной склянке!

Элемент из аптечной склянки

Вряд ли кто-либо из магдебургских аптекарей произносил знаменитую фразу городничего: «Я пригласил вас, господа, с тем, чтобы сообщить вам пренеприятное известие»,- но общая с ним черта у них была: ревизора они боялись.
Окружной врач Ролов отличался крутым нравом. Так, в 1817 г. он приказал изъять из продажи все препараты с окисью цинка , вырабатываемой на шенебекской фабрике Германа. По внешнему виду препаратов он заподозрил, что в окиси цинка есть мышьяк! (Окись цинка до сих пор применяют при кожных заболеваниях; из нее делают мази, присыпки, эмульсии.)
Чтобы доказать свою правоту, строгий ревизор растворил заподозренный окисел в кислоте и через этот раствор пропустил сероводород: выпал желтый осадок. Сульфиды мышьяка как раз желтые!

Владелец фабрики стал оспаривать решение Ролова. Он сам был химиком и, собственноручно проанализировав Образцы продукции, никакого мышьяка в них не обнаружил. Результаты анализа он сообщил Ролову, а заодно и властям земли Ганновер. Власти, естественно, затребовали образцы, чтобы отправить их на анализ кому-либо из авторитетных химиков. Решили, что судьей в споре Ролова и Германа должен выступить профессор Фридрих Штромейер, занимавший с 1802 г. кафедру химии в Геттингенском университете и должность генерального инспектора всех ганноверских аптек.
Штромейеру послали не только окись цинка, но и другие цинковые препараты с фабрики Германа, в том числе ZnC0 3 , из которого эту окись получали. Прокалив углекислый цинк, Штромейер получил окись, но не белую, как это должно было быть, а желтоватую. Владелец фабрики объяснял окраску примесью железа , но Штромейера такое объяснение не удовлетворило. Закупив побольше цинковых препаратов, он произвел полный их анализ и без особого труда выделил элемент, который вызывал пожелтение. Анализ говорил, что это не мышьяк (как утверждал Ролов), но и не железо (как утверждал Герман).

Фридрих Штромейер (1776-1835)

Это был новый, неизвестный прежде металл, по химическим свойствам очень похожий на цинк. Только гидроокись его, в отличие от Zn(OH) 2 , не была амфотерной, а имела ярко выраженные основные свойства.
В свободном виде новый элемент представлял собой белый металл, мягкий и не очень прочный, сверху покрытый коричневатой пленкой окисла. Металл этот Штромейер назвал кадмием, явно намекая на его «цинковое» происхождение: греческим словом издавна обозначали цинковые руды и окись цинка.
В 1818 г. Штромейер опубликовал подробные сведения о новом химическом элементе, и почти сразу на его приоритет стали покушаться. Первым выступил все тот же Ролов, который прежде считал, что в препаратах с фабрики Германа есть мышьяк . Вскоре после Штромейера другой немецкий химик, Керстен, нашел новый элемент в силезской цинковой руде и назвал его меллином (от латинского mellinus - «желтый, как айва») из-за цвета осадка, образующегося под действием сероводорода. Но это был уже открытый Штромейером кадмий . Позже этому элементу предлагали еще два названия: клапротий - в честь известного химика Мартина Клапрота и юноний - по имени открытого в 1804 г. астероида Юноны. Но утвердилось все- таки название, данное элементу его первооткрывателем. Правда, в русской химической литературе первой половины XIX в. кадмий нередко называли кадмом.


Семь цветов радуги

Сульфид кадмия CdS был, вероятно, первым соединением элемента № 48, которым заинтересовалась промышленность. CdS - это кубические или гексагональные кристаллы плотностью 4,8 г/см 3 . Цвет их от светло-желтого до оранжево-красного (в зависимости от способа приготовления). В воде этот сульфид практически не растворяется, к действию растворов щелочей и большинства кислот он тоже устойчив. А получить CdS довольно просто: достаточно пропустить, как это делали Штромейер и Ролов, сероводород через подкисленный раствор, содержащий ионы Cd 2+ . Можно получать его и в обменной реакции между растворимой солью кадмия, например CdS0 4 , и любым растворимым сульфидом.
CdS - важный минеральный краситель. Раньше его называли кадмиевой желтью. Вот что писали про кадмиевую желть в первой русской «Технической энциклопедии», выпущенной в начале XX в.
«Светлые желтые тона, начиная с лимонно-желтого, получаются из чистых слабокислых и нейтральных растворов сернокислого кадмия, а при осаждении сульфида кадмия раствором сернистого натрия получают тона более темно-желтые. Немалую роль при производстве кадмиевой желти играет присутствие в растворе примесей других металлов, как, например, цинка. Если последний находится совместно с кадмием в растворе, то при осаждении получается краска мутно-желтого тона с белесоватым оттенком... Тем или иным способом можно получить кадмиевую желть шести оттенков, начиная от лимонножелтого до оранжевого... Краска эта в готовом виде имеет очень красивый блестящий желтый цвет. Она довольно постоянна к слабым щелочам и кислотам, а к сероводороду совершенно не чувствительна; поэтому она смешивается в сухом виде с ультрамарином и дает прекрасную зеленую краску, которая в торговле называется кадмиевой зеленью.
Будучи смешана с олифою, она идет как масляная краска в малярном деле; очень укрывиста, но из-за высокой рыночной цены потребляется главным образом в живописи как масляная или акварельная краска, а также и для печатания. Благодаря ее большой огнеупорности употребляется для живописи по фарфору».
Остается добавить только, что впоследствии кадмиевая желть стала шире применяться «в малярном деле». В частности, ею красили пассажирские вагоны, потому что, помимо прочих достоинств, эта краска хорошо противостояла паровозному дыму. Как красящее вещество сульфид кадмия применили также в текстильном и мыловаренном производствах.

Но в последние годы промышленность все реже использует чистый сульфид кадмия - он все-таки дорог. Вытесняют его более дешевые вещества - кадмопон и цинкокадмиевый литопон.
Реакция получения кадмопона - классический пример образования двух осадков одновременно, когда в растворе не остается практически ничего, кроме воды:
CdSO 4 4- BaS (обе соли растворимы в воде) _*CdS J + BaS04 J .
Кадмопон - смесь сульфида кадмия и сульфата бария. Количественный состав этой смеси зависит от концентрации растворов. Варьировать состав, а следовательно, и оттенок красителя просто.
Цинкокадмиевый литопон содержит еще и сульфид цинка. При изготовлении этого красителя в осадок выпадают одновременно три соли. Цвет литопона кремовый или слоновой кости.
Как мы уже убедились, вещи осязаемые можно с помощью сульфида кадмия окрасить в три цвета: оранжевый, зеленый (кадмиевая зелень) и все оттенки желтого, д вот пламени сульфид кадмия придает иную окраску - синюю. Это его свойство используют в пиротехнике.
Итак, с помощью одного лишь соединения элемента 48 можно получить четыре из семи цветов радуги. Остаются лишь красный, голубой и фиолетовый. К голубому или фиолетовому цвету пламени можно прийти, дополняя свечение сернистого кадмия теми или иными пиротехническими добавками - для опытного пиротехника особого труда это не составит.
А красную окраску можно получить с помощью другого соединения элемента № 48 - его селенида. CdSe используют в качестве художественной краски, кстати очень ценной. Селенидом кадмия окрашивают рубиновое стекло; и не окись хрома, как в самом рубине, а селенид кадмия сделал рубиново-красными звезды московского Кремля.
Тем не менее значение солей кадмия намного меньше значения самого металла.


Преувеличения портят репутацию

Если построить диаграмму, отложив по горизонтальной оси даты, а по вертикальной - спрос на кадмий, то получится восходящая кривая. Производство этого элемента растет, и самый резкий «скачок» приходится на 40-е годы нашего столетия. Именно в это время кадмий превратился в стратегический материал - из него стали делать регулирующие и аварийные стержни атомных реакторов.

В популярной литературе можно встретить утверждение, что если бы не эти стержни, поглощающие избыток нейтронов, то реактор пошел бы «вразнос» и превратился в атомную бомбу. Это не совсем так. Для того чтобы произошел атомный взрыв, нужно соблюдение многих условий (здесь не место говорить о них подробно, а коротко ЭТ0 не объяснишь). Реактор, в котором цепная реакция стала неуправляемой, вовсе не обязательно взрывается, Но в любом случае происходит серьезная авария, чреватая огромными материальными издержками. А иногда не только материальными... Так что роль регулирующих и;икРииных стержней и без преувеличений достаточно вс-
Столь же не точно утверждение (см., например, известную книгу II. Р. Таубе и Е. И. Руденко «От водорода до... ». М., 1970), что для изготовления стержней и регулировки потока нейтронов кадмий - самый подходящий материал. Если бы перед словом «нейтронов» было еще и «тепловых», вот тогда это утверждение стало бы действительно точным.
Нейтроны, как известно, могут сильно отличаться по энергии. Есть нейтроны низких энергий - их энергия не превышает 10 килоэлектронвольт (кэв). Есть быстрые нейтроны - с энергией больше 100 кэв. И есть, напротив, малоэнергичные - тепловые и «холодные» нейтроны. Энергия первых измеряется сотыми долями электронвольта, у вторых она меньше 0,005 эв.
Кадмий на первых порах оказался главным «стержневым» материалом прежде всего потому, что он хорошо поглощает тепловые нейтроны. Все реакторы начала «атомного века» (а первый из них был построен Энрнко Ферми в 1942 г.) работали на тепловых нейтронах. Лишь спустя много лет выяснилось, что реакторы на быстрых нейтронах более перспективны и для энергетики, и для получения ядерного горючего - плутония-239. А против быстрых нейтронов кадмий бессилен, он их не задерживает.
Поэтому не следует преувеличивать роль кадмия в реакторостроении. А еще потому, что физико-химические свойства этого металла (прочность, твердость, термостойкость - его температура плавления всего 321° С) оставляют желать лучшего. А еще потому, что и без преувеличений роль, которую кадмий играл и играет в атомной технике, достаточно значима.
Кадмий был первым стержневым материалом. Затем на первые роли стали выдвигаться бор и его соединения. Но кадмий легче получать в больших количествах, чем бор: кадмий получали и получают как побочный продукт производства цинка и свинца. При переработке полиметаллических руд он - аналог цинка - неизменно оказывается главным образом в цинковом концентрате. А восстанавливается кадмий еще легче, чем цинк, и температуру кипения имеет меньшую (767 и 906°С соответственно). Поэтому при температуре около 800° С нетрудно разделить цинк и кадмий.

Кадмий мягок, ковок, легко поддается механической об-работке. Это тоже облегчало и ускоряло его путь в атомную технику. Высокая избирательная способность кад- }1ИЯ, его чувствительность именно к тепловым нейтронам также были на руку физикам. А по основной рабочей характеристике - сечению захвата тепловых нейтронов - кадмий занимает одно из первых мест среди всех элементов периодической системы - 2400 барн. (Напомним, что сечение захвата - это способность «вбирать в себя» нейтроны, измеряемая в условных единицах барнах.)
Природный кадмий состоит из восьми изотопов (с массовыми числами 106, 108, 110, 111, 112, ИЗ, 114 и 116), а сечение захвата - характеристика, по которой изотопы одного элемента могут отличаться очень сильно. В природной смеси изотопов кадмия главный «нейтроноглотатель»-это изотоп с массовым числом ИЗ. Его индивидуальное сечение захвата огромно - 25 тыс. барн!
Присоединяя нейтрон, кадмий-113 превращается в самый распространенный (28,86% природной смеси) изотоп элемента № 48 - кадмий-114. Доля же самого кадмия-113 - всего 12,26%.
Регулирующие стержни атомного реактора.

К сожалению, разделить восемь изотопов кадмия намного сложнее, чем два изотопа бора.
Регулирующие и аварийные стержни не единственное место «атомной службы» элемента № 48. Его способность поглощать нейтроны строго определенных энергий помогает исследовать энергетические спектры полученных нейтронных пучков. С помощью кадмиевой пластинки, которую ставят на пути пучка нейтронов, определяют, насколько этот пучок однороден (по величинам энергии), какова в нем доля тепловых нейтронов и т. д.
Не много, но есть
И напоследок - о ресурсах кадмия. Собственных его минералов, как говорится, раз-два и обчелся. Достаточно полно изучен лишь один - редкий, не образующий скоплений гринокит CdS. Еще два минерала элемента № 48 - отавит CdCO 3 и монтепонит CdO - совсем уж редки. Но не собственными минералами «жив» кадмий. Минералы цинка и полиметаллические руды - достаточно надежная сырьевая база для его производства.

Кадмирование

Всем известна оцинкованная жесть, но далеко не все знают, что для предохранения ягелеза от коррозии применяют не только цинкование, но и кадмирование. Кадмиевое покрытие сейчас наносят только электролитически, чаще всего в промышленных условиях применяют цианидные ванны. Раньше кадмировали железо и другие металлы погружением изделий в расплавленный кадмий.


Несмотря на сходство свойств кадмия и цинка, у кадмиевого покрытия есть несколько преимуществ: оно более устойчиво к коррозии, его легче сделать ровным и гладким. К тому же кадмий, в отличие от цинка, устойчив в щелочной среде. Кадмированную жесть применяют довольно широко, закрыт ей доступ только в производство тары для пищевых продуктов, потому что кадмий токсичен. У кадмиевых покрытий есть еще одна любопытная осо-бенность: в атмосфере сельских местностей они обладают значительно большей коррозийной устойчивостью, чем в атмосфере промышленных районов. Особенно быстро такое покрытие выходит из строя, если в воздухе повышено содержание сернистого или серного ангидридов.

Кадмий в сплавах

На производство сплавов расходуется примерно десятая часть мирового производства кадмия. Кадмиевые сплавы используют главным образом как антифрикционные материалы и припои. Известный сплав состава 99% Cd и 1% № применяют для изготовления подшипников, работающих в автомобильных, авиационных и судовых двигателях в условиях высоких температур. Поскольку кадмий недостаточно стоек к действию кислот , в том числе и содержащихся в смазочных материалах органических кислот, иногда подшипниковые сплавы на основе кадмия покрывают индием.
Припои, содержащие элемент № 48, довольно устойчивы к температурным колебаниям.
Легирование меди небольшими добавками кадмия позволяет делать более износостойкие провода на линиях электрического транспорта. Медь с добавкой кадмия почти не отличается по электропроводности от чистой меди, но зато заметно превосходит ее прочностью и твердостью.

АККУМУЛЯТОР АКН И НОРМАЛЬНЫЙ ЭЛЕМЕНТ ВЕСТОНА.

Среди применяемых в промышленности химических источников тока заметное место принадлежит кадмийникелевым аккумуляторам (АКН). Отрицательные пластины таких аккумуляторов сделаны из железных сеток с губчатым кадмием в качестве активного агента. Положительные пластины покрыты окисью никеля. Электролитом служит раствор едкого кали. Кадмийникелевые щелочные аккумуляторы отличаются от свинцовых (кислотных) большей надежностью. На основе этой,пары делают и очень компактные аккумуляторы для управляемых ракет. Только в этом случае в качестве основы устанавливают не железные, а никелевые сетки.

Элемент № 48 и его соединения использованы еще в одном химическом источнике тока. В конструкции нормального элемента Вестона работают и амальгама кадмия, и кристаллы сульфата кадмия, и раствор этой соли.

Токсичность кадмия

Сведения о токсичности кадмия довольно противоречивы. Вернее, то, что кадмий ядовит, бесспорно: спорят ученые о степени опасности кадмия. Известны случаи смертельного отравления парами этого металла и его соединении - так что такие пары представляют серьезную опасность. При попадании в желудок кадмий тоже вреден, но случаи смертельного отравления соединениями кадмия, попавшими в организм пищей, науке неизвестны. Видимо, это объясняется немедленньм удалением яда из желудка, предпринимаемым самим организмом. ] ем не менее во многих странах применение кадмированных покрытий для изготовления пищевой тары запрещено законом.

Большая часть производимого в мире кадмия расходуется на электропокрытия и для приготовления сплавов. Кадмий в качестве защитного покрытия обладает существенными приемуществами перед цинком и никелем, так как он более коррозионностоек в тонком слое; кадмий плотно связан с поверхностью металлического изделия и не отстает от нее при ее повреждении.

До недавних пор у кадмиевых покрытий имелся «недуг», время от времени дававший о себе знать. Дело в том, что при электролитическом нанесении кадмия на стальную деталь в металл может проникнуть содержащийся в электролите водород. Этот весьма нежеланный гость вызывает у высокопрочных сталей опасное «заболевание»-водородную хрупкость, приводящую к неожиданному разрушению металла под нагрузкой. Получалось, что, с одной стороны, кадмирование надежно предохраняло деталь от коррозии, а с другой - создавало угрозу преждевременного выхода детали из строя. Вот почему конструкторы часто были вынуждены отказываться от «услуг» кадмия.

Ученым Института физической химии Академии наук СССР удалось устранить эту «болезнь» кадмиевых покрытий. В роли лекарства выступил титан. Оказалось, что, если в слое кадмия на тысячу его атомов приходится всего один атом титана, стальная деталь застрахована от возникновения водородной хрупкости, поскольку титан в процессе нанесения покрытия вытягивает из стали весь водород.

Кадмий, также, используется у английских криминалистов: с помощью тончайшего слоя этого металла, напыленного на обследуемую поверхность, удается быстро выявить четкие отпечатки пальцев.

Кадмий, также, применяют в изготовлении кадмиево-никелевых аккумуляторов. Роль отрицательного электрода в них выполняют железные сетки с губчатым кадмием, а положительного пластины покрыты окисью никеля; электролитом служит раствор едкого калия. Такие источники тока отличаются высокими электрическими характеристиками, большой надежностью, длительным сроком эксплуатации, а их подзарядка занимает всего 15 минут.

Свойство кадмия поглощать нейтроны обусловило еще одну область применения кадмия- в атомной энергетики.

Подобно тому как автомобиль не обходится без тормозов, реактор не может работать без регулирующих стержней, увеличивающих или уменьшающих поток нейтронов.

В каждом реакторе предусмотрен также массивный аварийный стержень, который приступает к делу в том случае, если регулирующие стержни почему-либо не справляются с возложенными на них обязанностями.

Поучительный случай возник на АЭС в Калифорнии. Из-за каких-то конструктивных неполадок аварийный стержень не смог своевременно погрузиться в котел - цепная реакция стала неуправляемой, возникла серьезная авария. Реактор с разбушевавшимися нейтронами представлял огромную опасность для окрестного населения. Пришлось срочно эвакуировать людей из опасной зоны, пока ядерный «костер» не погас. К счастью, обошлось без жертв, но убытки были очень велики, да и реактор на некоторое время вышел из строя.

Главное требование, предъявляемое к материалу регулирующих и аварийных стержней, - способность поглощать нейтроны, а кадмий-один из «крупнейших специалистов» в этой области. С одной только оговоркой: если речь идет о тепловых нейтронах, энергия которых очень мала (она измеряется сотыми долями электрон-вольта). В первые годы атомной эры ядерные реакторы работали именно на тепловых нейтронах и кадмий долгое время считался «первой скрипкой» среди стержневых материалов. Позднее, правда, ему пришлось уступить ведущую роль бору и его соединениям. Но для кадмия физики-атомщики находят все новые и новые сферы деятельности: так, например, с помощью кадмиевой пластинки, устанавливаемой на пути нейтронного пучка, исследуют его энергетический спектр, определяют, насколько он однороден, какова в нем доля тепловых нейтронов.

Особый интерес ученых вызывало выращивание в невесомости кристалла КРТ, представляющего собой твердый раствор теллуридов кадмия и ртути. Этот полупроводниковый материал незаменим для изготовления теплэвизиров - точнейших инфракрасных приборов, применяемых в медицине, геологии, астрономии, электронике, радиотехнике и многих других важных областях науки и техники. Получить это соединение в земных условиях чрезвычайно трудно: его компоненты из-за большой разницы в плотности ведут себя как герои известной басни И. А. Крылова - лебедь, рак и щука, и в результате вместо однородного сплава получается слоеный «пирог». Ради крохотного кристаллика КРТ приходится выращивать большой кристалл и вырезать из него тончайшую пластинку пограничного слоя, а все остальное идет в отходы. Иначе нельзя: ведь чистота и однородность кристалла КРТ оцениваются в стомиллионных долях процента. Немудрено, что на мировом рынке один грамм этих кристаллов стоит «всего» восемь тысяч долларов.

Самая лучшая желтая краска представляет собой соединение кадмия с серой. Большие количества кадмия расходуются на изготовление этой краски.

ЗАКЛЮЧЕНИЕ

В многогранной деятельности кадмия есть и негативные стороны. Несколько лет назад один из сотрудников службы здравоохранения США установил, что существует прямая связь между смертностью от сердечно-сосудистых заболеваний и. содержанием кадмия в атмосфере. Этот вывод был сделан после тщательного обследования жителей 28 американских городов. В четырех из них - Чикаго, Нью-Йорке, Филадельфии и Индианополисе - содержание кадмия в воздухе оказалось значительно выше, чем в остальных городах; более высокой была здесь и доля смертных случаев в результате болезней сердца.

Пока медики и биологи определяют, вреден ли кадмий, и ищут пути снижения его содержания в окружающей среде, представители техники принимают все меры к увеличению его производства. Если за всю вторую половину прошлого столетия было добыто лишь 160 тонн кадмия, то в конце 20-х годов нашего века ежегодное производство его в капиталистических странах составляло уже примерно 700 тонн, а в 50-х годах оно достигло 7000 тонн (ведь именно в это время кадмий обрел статус стратегического материала, предназначенного для изготовления стержней атомных реакторов). И в XXI веке использование кадмия только возрастет, благодаря его незаменимым свойствам.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1) Дзлиев И.И. Металлургия кадмия. М.: Металлургиздат, 1962.

2) Крестовников А.Н. Кадмий. М.: Цветметиздат, 1956.

3) Крестовников А.Н. Каретникова В. П. Редкие металлы. М.: Цветметиздат, 1966.

4) Лебедев Б.Н. Кузнецова В.А. Цветные металлы. М.: Наука, 1976.

5) Любченко В.А. Цветные металлы. М.: Наука, 1963.

6) Максимова Г.В. Кадмий // Журнал неорганическая химия, № 3, 1959, С-98.

7) Плаксин И.Н. Юхтанов Д.М. Гидрометаллургия. М.: Металлургиздат, 1949.

8) Пейсахов И.Л. Цветные металлы. М.: Наука, 1950.

9) Планер В.И. Кадмий как предохранитель от коррозии. М.: Цветметиздат, 1952.

Что такое кадмий? Это тяжелый металл, который получается в результате выплавки других металлов, таких как цинк, медь или свинец. Его широко используют для изготовления никель-кадмиевых аккумуляторов. Кроме того, сигаретный дым также содержит такой элемент. В результате непрерывного воздействия кадмия возникают очень тяжелые заболевания легких и почек. Рассмотрим особенности этого металла более подробно.

Сфера применения кадмия

Большая часть промышленного использования этого металла приходится на защитные покрытия, которые предохраняют металлы от коррозии. Такое покрытие имеет большое преимущество перед цинковыми, никелевыми или оловянными, потому что при деформации оно не отслаивается.

Какое еще может быть применение кадмия? Он используется для производства сплавов, которые замечательно поддаются механической обработке. Сплавы кадмия с незначительными добавками меди, никеля и серебра применяют для изготовления подшипников автомобильных, авиационных и судовых двигателей.

Где еще используется кадмий?

Сварщики, металлурги и работники, связанные с текстильной, электронной промышленностью и производством аккумуляторов, чаще других подвергаются риску отравлением кадмием. Никель-кадмиевые аккумуляторы применяются в мобильных телефонах и прочих электронных устройствах. Используется этот металл также в производстве пластика, красок, металлических покрытий. Многие почвы, которые регулярно удобряют, также могут содержать такой токсичный металл в большом количестве.

кадмий: свойства

Кадмий, а также его соединения характеризуются как но не было доказано, что небольшое количество элемента в окружающей среде вызывает раковые заболевания. Вдыхание частиц металла на промышленном производстве действительно способствует развитию рака легких, но при употреблении зараженной пищи они не представляют опасности развития рака.

Каким образом кадмий попадает в организм человека?

Уже давно всем известно, что сигаретный дым содержит кадмий. Этот тяжелый металл поступает в организм курильщика в количестве, в два раза большем, чем в организм человека, который не подвержен такой вредной привычке. Однако пассивное курение способно нанести вред.

Листовые овощи, злаки и картофель, выращенные на почве, содержащей большое количество кадмия, могут нести в себе угрозу. Повышенным содержанием этого металла также славится печень и почки морских обитателей и животных.

Многие промышленные предприятия, особенно металлургические, выделяют в атмосферу большое количество кадмия. Люди, проживающие около таких предприятий, автоматически заносятся в группу риска.

Некоторые сельскохозяйственные районы активно применяют фосфатные удобрения, которые содержат незначительное количество кадмия. Продукты, выращенные на этой земле, представляют для человека потенциальную угрозу.

Воздействие кадмия на организм человека

Таким образом, мы разобрали, что представляет собой кадмий. Влияние на организм человека этого тяжелого металла может вызвать негативные последствия. В любом живом организме он находится в незначительном количестве, и его биологическая роль до сих пор до конца не выяснена. Обычно кадмий ассоциируется с негативной функцией.

Его токсичное воздействие основано на блокировке серосодержащих аминокислот, что приводит к нарушению белкового обмена и поражению ядра клетки. Этот тяжелый металл способствует выводу кальция из костей и поражает нервную систему. Может накапливаться в почках и печени, а выводится из организма он очень медленно. Этот процесс может занимать десятилетия. Обычно кадмий выводится с мочой и калом.

Вдыхание кадмия

Этот элемент попадает в организм работников промышленности при вдыхании. Чтобы не допустить этого, используют эффективные защитные средства. Пренебрежение этим правилом приводит к печальным последствиям. Если вдохнуть кадмий, влияние на организм человека такого металла проявляется следующим образом: повышается температура тела, появляется озноб и боли в мышцах.

Через некоторое время происходит повреждение легких, возникает боль в груди, одышка, кашель. В тяжелых случаях такое состояние вызывает смерть больного. Вдыхание воздуха, содержащего кадмий, способствует развитию заболеваний почек и остеопороза. Вероятность рака легких повышается в несколько раз.

Поступление кадмия вместе с пищей

Чем опасен кадмий в воде и пище? При регулярном употреблении зараженных продуктов и воды в организме начинает накапливаться этот металл, что приводит к негативным последствиям: нарушается работа почек, происходит ослабление костной ткани, поражается печень, сердце, а в тяжелых случаях наступает смерть.

Употребление продуктов, загрязненных кадмием, может спровоцировать раздражение желудка, тошноту, боль в животе, диарею и рвоту. Кроме этого, появляются симптомы, напоминающие грипп, развивается отек гортани и возникает покалывание в руках.

Причины отравления кадмием

Отравление тяжелыми металлами чаще всего происходит у детей, диабетиков, беременных и кормящих женщин, людей, злоупотребляющих курением. В Японии интоксикация организма кадмием происходит в результате употребления загрязненного риса. В этом случае развивается апатия, поражаются почки, кости размягчаются и деформируются.

Промышленно развитые районы, в которых располагаются нефтеперерабатывающие и металлургические предприятия, славятся тем, что там почва загрязнена кадмием. Если в таких местах выращивают растительную продукцию, то велика вероятность того, что произойдет отравление тяжелыми металлами.

Элемент в больших количествах может накапливаться в табаке. Если сырье высушивается, то содержание металла резко увеличивается. Поступление в организм кадмия происходит как при активном, так и при Возникновение рака легких напрямую зависит от содержания в дыме металла.

Лечение при отравлении

Кадмием:

  • поражение центральной нервной системы;
  • острые боли в костях;
  • белок в моче;
  • камни в почках;
  • дисфункция половых органов.

Если произошло острое отравление, пострадавшему следует находиться в тепле, ему необходимо обеспечить приток свежего воздуха и покой. После промывания желудка ему нужно дать теплое молоко, в которое добавляют немного пищевой соды. Не существует каких-либо антидотов кадмия. Чтобы нейтрализовать металл, используют "Унитиол", стероиды и мочегонные препараты. Комплексное лечение предусматривает применение антагонистов кадмия (цинк, железо, селен, витамины). Врач может назначить общеукрепляющую диету, содержащую большое количество клетчатки и пектиновых веществ.

Возможные последствия

Такой металл, как кадмий, влияние на организм человека оказывает очень серьезное, а если произошло отравление этим элементом, то последствия могут быть опасными. Он вытесняет кальций из костей, способствуя развитию остеопороза. У взрослых и детей начинает искривляться позвоночник и происходит деформация костей. В детском возрасте подобное отравление приводит к энцефалопатии и нейропатии.

Вывод

Таким образом, мы разобрали, что представляет собой такой тяжелый металл, как кадмий. Влияние на организм человека этого элемента довольно серьезное. Постепенно накапливаясь в организме, он приводит к разрушению многих органов. Можно даже отравиться кадмием, если употреблять в большом количестве зараженные продукты. Последствия отравления также достаточно опасные.

Кадмий (Cadmium), Cd, химический элемент II группы периодической системы Менделеева; атомный номер 48, атомная масса 112,40; белый, блестящий, тяжелый, мягкий, тягучий металл. Элемент состоит из смеси 8 стабильных изотопов с массовыми числами: 106 (1,215%), 108 (0,875%), 110 (12,39%), 111 (12,75%), 112 (24,07%), 113 (12,26%), 114 (28,86%), 116 (7,58%).

Историческая справка. В 1817 году немецкий химик Ф. Штромейер, при ревизии одной из аптек, обнаружил, что имевшийся там карбонат цинка содержит примесь неизвестного металла, который осаждается в виде желтого сульфида сероводородом из кислого раствора. Штромейер назвал открытый им металл кадмием (от греч. kadmeia - нечистый оксид цинка, также цинковая руда). Независимо от него немецкие ученые К. Герман, К. Карстен и В. Мейснер в 1818 году открыли Кадмий в силезских цинковых рудах.

Распространение Кадмия в природе. Кадмий - редкий и рассеянный элемент с кларком литосферы 1,3·10 -5 % по массе. Для Кадмия характерны миграция в горячих подземных водах вместе с цинком и других халькофильными элементами и концентрация в гидротермальных месторождениях. Минерал сфелерит ZnS местами содержит до 0,5-1% Cd, максимально до 5%. Реже встречается гринокит CdS. Концентрируется кадмий в морских осадочных породах - сланцах (Мансфельд, Германия), в песчаниках, в которых он также связан с цинком и другими халькофильными элементами. В биосфере известны три очень редких самостоятельных минерала Кадмия - карбонат CdCO 3 (ставит), оксид CdO (монтепонит) и селенид CdSe.

Физические свойства Кадмия. Кристаллическая решетка Кадмия гексагональная, а = 2,97311 Å, с = 5,60694 Å (при 25 °C); атомный радиус 1,56 Å, ионный радиус Cd 2+ 1,03Å. Плотность 8,65 г/см 3 (20 °C), t пл 320,9° С, t кип 767 °C, коэффициент термического расширения 29,8·10 -6 (при 25 °C); теплопроводность (при 0°C) 97,55 вт/(м·К) или 0,233 кал/(см·сек·°С); удельная теплоемкость (при 25 °C) 225,02 дж/(кг·К) или 0,055 кал/(г·°С); удельное электросопротивление (при 20 °C) 7,4·10 -8 ом·м (7,4·10 -6 ом·см); температурный коэффициент электросопротивления 4,3·10 -3 (0-100° С). Предел прочности при растяжении 64 Мн/м 2 (6,4 кгс/мм 2), относительное удлинение 20%, твердость по Бринеллю 160 Мн/м 2 (16 кгс/мм 2).

Химические свойства Кадмия. В соответствии с внешней электронной конфигурацией атома 4d 10 5s 2 валентность Кадмия в соединениях равна 2. На воздухе Кадмий тускнеет, покрываясь тонкой пленкой оксида CdO, которая защищает металл от дальнейшего окисления. При сильном нагревании на воздухе Кадмий сгорает в оксид CdO - кристаллический порошок от светло-коричневого до темно-бурого цвета, плотность 8,15 г/см 3 ; при 700°C CdO возгоняется, не плавясь. Кадмий непосредственно соединяется с галогенами; эти соединения бесцветны; CdCl 2 , CdBr 2 и CdI 2 очень легко растворимы в воде (около 1 части безводной соли в 1 части воды при 20 °C), CdF 2 растворим труднее (1 часть в 25 частях воды). С серой Кадмий образует сульфид CdS от лимонно-желтого до оранжево-красного цвета, нерастворимый в воде и разбавленных кислотах. Кадмий легко растворяется в азотной кислоте с выделением оксидов азота и образованием нитрата, который дает гидрат Cd(NOa) 2 ·4H 2 O. Из кислот - соляной и разбавленной серной Кадмий медленно выделяет водород, при выпаривании растворов из них кристаллизуются гидраты хлорида 2CdCl 2 ·5H 2 O и сульфата 3CdSO 4 ·8H 2 O. Растворы солей Кадмия имеют кислую реакцию вследствие гидролиза; едкие щелочи осаждают из них белый гидрооксид Cd(OH) 2 , нерастворимый в избытке реактива; впрочем, при действии концентрированных растворов щелочи на Cd(OH) 2 были получены гидрооксокадмиаты, например Na 2 . Катион Cd 2+ легко образует комплексные ионы с аммиаком 2+ и с цианом 2- и 4- . Известны многочисленные основные, двойные и комплексные соли Кадмия. Соединения Кадмия ядовиты; особенно опасно вдыхание паров его оксида.

Получение Кадмия. Кадмий получают из побочных продуктов переработки цинковых, свинцово-цинковых и медно-цинковых руд. Эти продукты (содержащие 0,2-7% Кадмия) обрабатывают разбавленной серной кислотой, которая растворяет оксиды Кадмия и цинка. Из раствора осаждают Кадмий цинковой пылью; губчатый остаток (смесь Кадмия и цинка) растворяют в разбавленной серной кислоте и выделяют Кадмий электролизом этого раствора. Электролитический Кадмий переплавляют под слоем едкого натра и отливают в палочки; чистота металла - не менее 99,98%.

Применение Кадмия. Металлический Кадмий применяют в ядерных реакторах, для антикоррозионных и декоративных покрытий, в аккумуляторах. Кадмий служит основой некоторых подшипниковых сплавов, входит в состав легкоплавких сплавов (например, сплав Вуда). Легкоплавкие сплавы применяют для спайки стекла с металлом, в автоматических огнетушителях, для тонких и сложных отливок в гипсовых формах и других. Сульфид Кадмия (кадмиевая желтая) - краска для живописи. Сульфат и амальгама Кадмия используются в нормальном элементе Вестона.

Кадмий в организме. Содержание Кадмия в растениях составляет 10 -4 % (на сухое вещество); у некоторых животных (губок, кишечнополостных, червей, иглокожих и оболочников) - 4-10 -5 - 3-10 -3 % сухого вещества. Обнаружен у всех позвоночных животных. Наиболее богата Кадмием печень. Кадмий влияет на углеводный обмен, на синтез в печени гиппуровой кислоты, на активность некоторых ферментов.

Кадмий - элемент побочной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 48. Обозначается символом Cd (лат. Cadmium). Мягкий ковкий тягучий переходный металл серебристо-белого цвета.

История открытия кадмия

Окружной врач Ролов отличался крутым нравом. Так, в 1817 г. он приказал изъять из продажи все препараты с окисью цинка, вырабатываемой на шенебекской фабрике Германа. По внешнему виду препаратов он заподозрил, что в окиси цинка есть мышьяк! (Окись цинка до сих пор применяют при кожных заболеваниях; из нее делают мази, присыпки, эмульсии.)

Чтобы доказать свою правоту, строгий ревизор растворил заподозренный окисел в кислоте и через этот раствор пропустил сероводород: выпал желтый осадок. Сульфиды мышьяка как раз желтые!

Владелец фабрики стал оспаривать решение Ролова. Он сам был химиком и, собственноручно проанализировав образцы продукции, никакого мышьяка в них не обнаружил. Результаты анализа он сообщил Ролову, а заодно и властям земли Ганновер. Власти, естественно, затребовали образцы, чтобы отправить их на анализ кому-либо из авторитетных химиков. Решили, что судьей в споре Ролова и Германа должен выступить профессор Фридрих Штромейер, занимавший с 1802 г. кафедру химии в Геттингенском университете и должность генерального инспектора всех ганноверских аптек.

Штромейеру послали не только окись цинка, но и другие цинковые препараты с фабрики Германа, в том числе ZnCO 3 , из которого эту окись получали. Прокалив углекислый цинк, Штромейер получил окись, но не белую, как это должно было быть, а желтоватую. Владелец фабрики объяснял окраску примесью железа, но Штромейера такое объяснение не удовлетворило. Закупив побольше цинковых препаратов, он произвел полный их анализ и без особого труда выделил элемент, который вызывал пожелтение. Анализ говорил, что это не мышьяк (как утверждал Ролов), но и не железо (как утверждал Герман).

Это был новый, неизвестный прежде металл, по химическим свойствам очень похожий на цинк. Только гидроокись его, в отличие от Zn(OH) 2 , не была амфотерной, а имела ярко выраженные основные свойства.

В свободном виде новый элемент представлял собой белый металл, мягкий и не очень прочный, сверху покрытый коричневатой пленкой окисла. Металл этот Штромейер назвал кадмием, явно намекая на его «цинковое» происхождение: греческим словом καδμεια издавна обозначали цинковые руды и окись цинка.

В 1818 г. Штромейер опубликовал подробные сведения о новом химическом элементе, и почти сразу на его приоритет стали покушаться. Первым выступил все тот же Ролов, который прежде считал, что в препаратах с фабрики Германа есть мышьяк. Вскоре после Штромейера другой немецкий химик, Керстен, нашел новый элемент в силезской цинковой руде и назвал его меллином (от латинского mellinus – «желтый, как айва») из-за цвета осадка, образующегося под действием сероводорода. Но это был уже открытый Штромейером кадмий. Позже этому элементу предлагали еще два названия: клапротий – в честь известного химика Мартина Клапрота и юноний – по имени открытого в 1804 г. астероида Юноны. Но утвердилось все-таки название, данное элементу его первооткрывателем. Правда, в русской химической литературе первой половины XIX в. кадмий нередко называли кадмом.

Кадмий в окружающей среде

Среднее содержание кадмия в земной коре 130 мг/т. Кадмий относится к редким, рассеянным элементам: он содержится в виде изоморфной примеси во многих минералах и всегда в минералах цинка. Известно всего лишь 6 кадмиевых минералов. Весьма редкими минералами кадмия являются гринокит CdS (77,8% Cd), хоулиит (то же), отавит CdCO 3 , монтемпонит CdO (87,5% Cd), кадмоселит CdSe (47% Cd), ксантохроит CdS(H 2 O) х (77,2% Cd). Основная масса кадмия рассеяна в большом числе минералов (более 50), преимущественно в сульфидах цинка, свинца, меди, железа, марганца и ртути.

Хотя известны самостоятельные минералы кадмия - гринокит (CdS), отавит (CdCO 3), монтепонит (CdO) и селенид (CdSe), своих месторождений они не образуют, а присутствуют в виде примесей в цинковых, свинцовых, медных и полиметаллических рудах, которые и являются основным источником промышленной добычи кадмия. Максимальная концентрация отмечена в минералах цинка и прежде всего в сфалерите (до 5%). В большинстве же случаев содержание кадмия в сфалерите не превышает 0,4 – 0,6%. В других сульфидах, например, в станине содержание кадмия 0,003 – 0,2%, в галените 0,005 – 0,02%, в халькопирите 0,006 – 0,12%; из этих сульфидов кадмий обычно не извлекается.
Присутствует кадмий, кстати, в определенных количествах и в воздухе. По зарубежным данным содержание кадмия в воздухе составляет 0.1-5.0 нг/м 3 в сельской местности (1 нг или 1 нанограмм = 10 -9 грамм), 2 - 15 нг/м 3 - в городах и от 15 до 150 нг/м 3 - в промышленных районах. Связано это, в частности, и с тем, что многие угли содержат кадмий в виде примеси и, при сжигании на теплоэлектростанциях, он попадает в атмосферу. При этом существенная часть его оседает на почву. Также увеличению содержания кадмия в почве способствует использование минеральных удобрений, т.к. практически все они содержат незначительные примеси кадмия.
Кадмий способен накапливаться в растениях (больше всего в грибах) и живых организмах (особенно в водных) и далее по пищевой цепочке может "поставляться" человеку. Много кадмия в сигаретном дыме.

В естественных условиях кадмий попадает в подземные воды в результате выщелачивания руд цветных металлов, а также в результате разложения водных растений и организмов, способных его накапливать. В последние десятилетия превалирующим становится антропогенный фактор загрязнения кадмием природных вод. Кадмий присутствует в воде в растворенном виде (сульфат, хлорид, нитрат кадмия) и во взвешенном виде в составе органо-минеральных комплексов. На содержание кадмия в воде существенное влияние оказывает pH среды (в щелочной среде кадмий выпадает в осадок в виде гидроксида), а также сорбционные процессы.

Получение кадмия

Единственный минерал, который представляет интерес в получении кадмия - гринокит, так называемая «кадмиевая обманка». Его добывают вместе с фаеритом при разработке цинковых руд. В ходе переработки кадмий концентрируется в побочных продуктах процесса, откуда его потом извлекают. В настоящее время производится свыше 10³ тонн кадмия в год.

При переработке полиметаллических руд он – аналог цинка – неизменно оказывается главным образом в цинковом концентрате. А восстанавливается кадмий еще легче, чем цинк, и температуру кипения имеет меньшую (767 и 906°C соответственно). Поэтому при температуре около 800°C нетрудно разделить цинк и кадмий.

Физические свойства кадмия

Серебристо-белый мягкий металл с гексагональной решёткой. Если кадмиевую палочку изгибать, то можно услышать слабый треск - это трутся друг о друга микрокристаллы металла (так же трещит и пруток олова).

Кадмий мягок, ковок, легко поддается механической обработке. Это тоже облегчало и ускоряло его путь в атомную технику. Высокая избирательная способность кадмия, его чувствительность именно к тепловым нейтронам также были на руку физикам. А по основной рабочей характеристике – сечению захвата тепловых нейтронов – кадмий занимает одно из первых мест среди всех элементов периодической системы – 2400 барн. (Напомним, что сечение захвата – это способность «вбирать в себя» нейтроны, измеряемая в условных единицах барнах.)

Природный кадмий состоит из восьми изотопов (с массовыми числами 106, 108, 110, 111, 112, 113, 114 и 116), а сечение захвата – характеристика, по которой изотопы одного элемента могут отличаться очень сильно. В природной смеси изотопов кадмия главный «нейтроноглотатель» – это изотоп с массовым числом 113. Его индивидуальное сечение захвата огромно – 25 тыс. барн!

Присоединяя нейтрон, кадмий-113 превращается в самый распространенный (28,86% природной смеси) изотоп элемента №48 – кадмий-114. Доля же самого кадмия-113 – всего 12,26%. К сожалению, разделить восемь изотопов кадмия намного сложнее, чем два изотопа бора.

Кристаллическая решетка Кадмия гексагональная, а = 2,97311 Å, с = 5,60694 Å (при 25 °C); атомный радиус 1,56 Å, ионный радиус Cd 2+ 1,03Å. Плотность 8,65 г/см 3 (20 °C), t пл 320,9° С, t кип 767 °C, коэффициент термического расширения 29,8·10 -6 (при 25 °C); теплопроводность (при 0°C) 97,55 вт/(м·К) или 0,233 кал/(см·сек·°С); удельная теплоемкость (при 25 °C) 225,02 дж/(кг·К) или 0,055 кал/(г·°С); удельное электросопротивление (при 20 °C) 7,4·10 -8 ом·м (7,4·10 -6 ом·см); температурный коэффициент электросопротивления 4,3·10 -3 (0-100° С). Предел прочности при растяжении 64 Мн/м 2 (6,4 кгс/мм 2), относительное удлинение 20%, твердость по Бринеллю 160 Мн/м 2 (16 кгс/мм 2).

Химические свойства кадмия

Кадмий расположен в одной группе периодической системы с цинком и ртутью, занимая промежуточное место между ними, поэтому некоторые химические свойства этих элементов сходны. Так, сульфиды и оксиды этих элементов практически нерастворимы в воде. С углеродом кадмий не взаимодействует, отсюда следует, что кадмий карбидов не образует.

В соответствии с внешней электронной конфигурацией атома 4d 10 5s 2 валентность Кадмия в соединениях равна 2. На воздухе Кадмий тускнеет, покрываясь тонкой пленкой оксида CdO, которая защищает металл от дальнейшего окисления. При сильном нагревании на воздухе Кадмий сгорает в оксид CdO - кристаллический порошок от светло-коричневого до темно-бурого цвета, плотность 8,15 г/см 3 ; при 700°C CdO возгоняется, не плавясь. Кадмий непосредственно соединяется с галогенами; эти соединения бесцветны; CdCl 2 , CdBr 2 и CdI 2 очень легко растворимы в воде (около 1 части безводной соли в 1 части воды при 20 °C), CdF 2 растворим труднее (1 часть в 25 частях воды). С серой Кадмий образует сульфид CdS от лимонно-желтого до оранжево-красного цвета, нерастворимый в воде и разбавленных кислотах. Кадмий легко растворяется в азотной кислоте с выделением оксидов азота и образованием нитрата, который дает гидрат Cd(NOa) 2 ·4H 2 O. Из кислот - соляной и разбавленной серной Кадмий медленно выделяет водород, при выпаривании растворов из них кристаллизуются гидраты хлорида 2CdCl 2 ·5H 2 O и сульфата 3CdSO 4 ·8H 2 O. Растворы солей Кадмия имеют кислую реакцию вследствие гидролиза; едкие щелочи осаждают из них белый гидрооксид Cd(OH) 2 , нерастворимый в избытке реактива; впрочем, при действии концентрированных растворов щелочи на Cd(OH) 2 были получены гидрооксокадмиаты, например Na 2 . Катион Cd 2+ легко образует комплексные ионы с аммиаком 2+ и с цианом 2- и 4- . Известны многочисленные основные, двойные и комплексные соли Кадмия. Соединения Кадмия ядовиты; особенно опасно вдыхание паров его оксида.

Применение кадмия

Кадмий обрёл популярность в 40-е годы 20-го столетия. Именно в это время кадмий превратился в стратегический материал – из него стали делать регулирующие и аварийные стержни атомных реакторов.

Кадмий на первых порах оказался главным «стержневым» материалом прежде всего потому, что он хорошо поглощает тепловые нейтроны. Все реакторы начала «атомного века» (а первый из них был построен Энрико Ферми в 1942 г.) работали на тепловых нейтронах. Лишь спустя много лет выяснилось, что реакторы на быстрых нейтронах более перспективны и для энергетики, и для получения ядерного горючего – плутония-239. А против быстрых нейтронов кадмий бессилен, он их не задерживает.

Однако не следует преувеличивать роль кадмия в реакторостроении, т.к. физико-химические свойства этого металла (прочность, твердость, термостойкость – его температура плавления всего 321°C) оставляют желать лучшего. Кадмий был первым стержневым материалом. Затем на первые роли стали выдвигаться бор и его соединения. Но кадмий легче получать в больших количествах.

Кадмиевые сплавы

На производство сплавов расходуется примерно десятая часть мирового производства кадмия. Кадмиевые сплавы используют главным образом как антифрикционные материалы и припои. Известный сплав состава 99% Cd и 1% Ni применяют для изготовления подшипников, работающих в автомобильных, авиационных и судовых двигателях в условиях высоких температур. Поскольку кадмий недостаточно стоек к действию кислот, в том числе и содержащихся в смазочных материалах органических кислот, иногда подшипниковые сплавы на основе кадмия покрывают индием.

Легирование меди небольшими добавками кадмия позволяет делать более износостойкие провода на линиях электрического транспорта. Медь с добавкой кадмия почти не отличается по электропроводности от чистой меди, но зато заметно превосходит ее прочностью и твердостью.

Сплав кадмия с золотом имеет зеленоватый цвет. Сплав кадмия с вольфрамом, рением и 0,15 % урана 235 - небесно-голубого цвета был получен испанскими учеными в 1998 году.

Защитные покрытия с помощью кадмия

Всем известна оцинкованная жесть, но далеко не все знают, что для предохранения железа от коррозии применяют не только цинкование, но и кадмирование. Кадмиевое покрытие сейчас наносят только электролитически, чаще всего в промышленных условиях применяют цианидовые ванны. Раньше кадмировали железо и другие металлы погружением изделий в расплавленный кадмий.

Несмотря на сходство свойств кадмия и цинка, у кадмиевого покрытия есть несколько преимуществ: оно более устойчиво к коррозии, его легче сделать ровным и гладким. К тому же кадмий, в отличие от цинка, устойчив в щелочной среде. Кадмированную жесть применяют довольно широко, закрыт ей доступ только в производство тары для пищевых продуктов, потому что кадмий токсичен. У кадмиевых покрытий есть еще одна любопытная особенность: в атмосфере сельских местностей они обладают значительно большей коррозийной устойчивостью, чем в атмосфере промышленных районов. Особенно быстро такое покрытие выходит из строя, если в воздухе повышено содержание сернистого или серного ангидридов.

Кадмий в производстве химических источников тока

Важнейшей областью применения кадмия является производство химических источников тока. Кадмиевые электроды используются в батареях и аккумуляторах. Отрицательные пластины никель-кадмиевых аккумуляторов изготовлены из железных сеток с губчатым кадмием в качестве активного агента. Положительные пластины покрыты гидроксидом никеля. Электролитом служит раствор гидроксида калия. На основе кадмия и никеля изготавливают и компактные аккумуляторы для управляемых ракет, только в этом случае в качестве основы устанавливают не железные, а никелевые сетки.

Никель-кадмиевые щелочные аккумуляторы более надежны, чем свинцовые (кислотные). Эти источники тока отличаются высокими электрическими характеристиками, стабильностью работы, длительным сроком эксплуатации. Их можно зарядить всего за один час. Однако никель-кадмиевые аккумуляторы нельзя подзаряжать без полной предварительной разрядки (в этом отношении они уступают металлогидридным аккумуляторам).

Около 20 % кадмия идет на изготовление кадмиевых электродов, применяемых в аккумуляторах (никель-кадмиевых и серебряно-кадмиевых), нормальных элементах Вестона, в резервных батареях (свинцово-кадмиевый элемент, ртутно-кадмиевый элемент и др.

Пигменты

Около 20 % кадмия используется для производства неорганических красящих веществ (сульфиды и селениды, смешанные соли, например, сульфид кадмия - кадмий лимонный).

Применение кадмия в медицине
  • Иногда кадмий применяется в экспериментальной медицине.

Кадмий используется в гомеопатической медицине.

  • В последние годы кадмий стал применяться при создании новых противоопухолевых нано-медикаментов. В России в начале 1950-х годов были проведены первые успешные эксперименты, связанные с разработкой противоопухолевых медикаментов на основе соединений кадмия.
Другие сферы применения кадмия
  • Сульфид кадмия применяется для производства плёночных солнечных батарей с КПД около 10-16 %, а также как очень хороший термоэлектрический материал.
  • Используется как компонент полупроводниковых материалов и люминофоров.
  • Теплопроводность металла вблизи абсолютного нуля наивысшая среди всех металлов, поэтому кадмий иногда применяется для криогенной техники.

Влияние кадмия на организм человека

Кадмий - один из самых токсичных тяжелых металлов и поэтому Российским СанПиНом он отнесен ко 2-му классу опасности.

Соединения кадмия ядовиты. Особенно опасным случаем является вдыхание паров его оксида (CdO). Кадмий - кумулятивный яд (способен накапливаться в организме). В питьевой воде ПДК для кадмия 0,001 мг/дм³

Растворимые соединения кадмия после всасывания в кровь поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей.

Кадмий в норме в небольших количествах присутствуют в организме здорового человека. Кадмий легко накапливается в быстроразмножающихся клетках (например в опухолевых или половых). Он связывается с цитоплазматическим и ядерным материалом клеток и повреждает их. Он изменяет активность многих гормонов и ферментов. Это обусловлено его способностью связывать сульфгидрильные (-SH) группы.

В 1968 г. в одном известном журнале появилась заметка, которая называлась «Кадмий и сердце». В ней говорилось, что доктор Кэррол – сотрудник службы здравоохранения США – обнаружил зависимость между содержанием кадмия в атмосфере и частотой смертельных случаев от сердечно-сосудистых заболеваний. Если, скажем, в городе А содержание кадмия в воздухе больше, чем в городе Б, то и сердечники города А умирают раньше, чем если бы они жили в городе Б. Такой вывод Кэррол сделал, проанализировав данные по 28 городам.

По данным USEPA, ВОЗ и Министерства Здравоохранения Канады суммарное суточное поступление кадмия в организм человека из всех источников составляет 10-50 мкг. Основным и наиболее "стабильным" источником является пища - в среднем от 10 до 30-40 мкг кадмия в сутки. Овощи, фрукты, мясо животных, рыба содержат обычно 10-20 мкг кадмия на килограмм веса. Однако нет правил без исключений. Злаковые культуры, выросшие на загрязненной кадмием почве, либо поливавшиеся содержащей кадмий водой могут содержать повышенное количество кадмия (более 25 мкг/кг).

Существенную "прибавку" кадмия получают курильщики. Одна сигарета содержит 1 мкг (а иногда и более - до 2 мкг) кадмия. Вот и считайте - человек, выкуривающий в день пачку сигарет подвергает свой организм дополнительному воздействию как минимум 20 мкг кадмия, которые, для справки, не задерживаются даже угольным фильтром.
Необходимо также отметить, что через легкие кадмий легче усваивается организмом - до 10-20%. Т.е. из одной пачки сигарет усвоится 2 - 4 мкг кадмия. При поступлении же через желудочно-кишечный тракт, процент усвояемости составляет лишь 4-7% (0.2 - 5 мкг кадмия в сутки абсолютных цифрах). Таким образом курильщик как минимум в 1,5-2 раза увеличивает "нагрузку" на свой организм по кадмию, что чревато неблагоприятными для здоровья последствиями.

Мировой рынок кадмия

В год производится около 20 тыс. т кадмия. Объем его производства в большой степени связан с масштабами производства цинка.

Около 82% мировых поставок рафинированного кадмия приходится на никель-кадмиевые источники питания, однако после ограничений на их производство в Европе будут затронута одна треть потребления кадмия. В результате роста производства цинка в Европе и сокращения использования кадмия возможно наличие «свободного» кадмия, чаще всего в виде твёрдых отходов, но производство никель-кадмиевых батарей растет в Азии, происходит перевод производств в Азию и, как следствие, растет спрос на кадмий в Азиатском регионе. Пока это позволит держать мировое потребление кадмия на существующем уровне. В 2007 г. цены на кадмий, стартовав с 4.18 долл./кг, поднялись до 13 долл/кг, но к концу года составили 7 долл/кг.

В 2010 году южнокорейская Young Poong Corp. нарастила производство кадмия на 75%, до 1400 т в год и планирует вскоре запустить новые мощности, заявил официальный представитель компании.