Структурная схема узо. Зачем нужно устройство защитного отключения для дома и как его выбрать

УЗО с номинальным током 40 А

АВДТ с защитой от сверхтоков OptiDin VD63 с номинальным током до 63А

Устройство защитного отключения (сокр. УЗО ; более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током , сокр. УЗО−Д ) или выключатель дифференциального тока (ВДТ ) или защитно-отключающее устройство (ЗОУ ) - механический коммутационный аппарат или совокупность элементов, которые при достижении (превышении) дифференциальным током заданного значения при определённых условиях эксплуатации должны вызвать размыкание контактов. Может состоять из различных отдельных элементов, предназначенных для обнаружения, измерения (сравнения с заданной величиной) дифференциального тока и замыкания и размыкания электрической цепи (разъединителя) .

Основная задача УЗО - защита человека от поражения электрическим током и от возникновения пожара , вызванного утечкой тока через изношенную изоляцию проводов и некачественные соединения.

Широкое применение также получили комбинированные устройства, совмещающие в себе УЗО и устройство защиты от сверхтока , такие устройства называются УЗО−Д со встроенной защитой от сверхтоков , либо просто диффавтомат . Часто диффавтоматы снабжаются специальной индикацией, позволяющей определить, по какой причине произошло срабатывание (от сверхтока или от дифференциального тока).

Назначение

УЗО предназначены для

  • Защиты человека от поражения электрическим током при косвенном прикосновении (прикосновение человека к открытым проводящим нетоковедущим частям электроустановки, оказавшимся под напряжением в случае повреждения изоляции), а также при непосредственном прикосновении (прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением). Данную функцию обеспечивают УЗО соответствующей чувствительности (ток отсечки не более 30 мА).
  • Предотвращения возгораний при возникновении токов утечки на корпус или на землю .

Цели и принцип работы

Принцип работы УЗО основан на измерении баланса токов между входящими в него токоведущими проводниками с помощью дифференциального трансформатора тока . Если баланс токов нарушен, то УЗО немедленно размыкает все входящие в него контактные группы, отключая таким образом неисправную нагрузку.

УЗО измеряет алгебраическую сумму токов, протекающих по контролируемым проводникам (двум для однофазного УЗО, четырём для трехфазного и т. д.): в нормальном состоянии ток, «втекающий» по одним проводникам, должен быть равен току, «вытекащему» по другим, то есть сумма токов, проходящих через УЗО равна нулю (точнее, сумма не должна превышать допустимое значение). Если же сумма превышает допустимое значение, то это означает, что часть тока проходит помимо УЗО, то есть контролируемая электрическая цепь неисправна - в ней имеет место утечка.

Обнаружение токов утечки при помощи УЗО является дополнительным защитным мероприятием, а не заменой защиты от сверхтоков при помощи предохранителей, так как УЗО никак не реагирует на неисправности, если они не сопровождаются утечкой тока (например, короткое замыкание между фазным и нулевым проводниками).

УЗО с отключающим дифференциальным током порядка 300 мА и более иногда применяются для защиты больших участков электрических сетей (например, в компьютерных центрах), где низкий порог привел бы к ложным срабатываниям. Такие низкочувствительные УЗО выполняют противопожарную функцию и не являются эффективной защитой от поражения электрическим током.

Пример

Внутреннее устройство УЗО, подключаемого в разрыв шнура питания

На фотографии показано внутреннее устройство одного из типов УЗО. Данное УЗО предназначено для установки в разрыв шнура питания, его номинальный ток 13 А, отключающий дифференциальный ток 30 мА. Данное устройство является:

  • УЗО со вспомогательным источником питания;
  • выполняющим автоматическое отключение при отказе вспомогательного источника.

Это означает, что УЗО может быть включено только при наличии питающего напряжения, при пропадании напряжения оно автоматически отключается (такое поведение повышает безопасность устройства).

Фазный и нулевой проводники от источника питания подключаются к контактам (1), нагрузка УЗО подключается к контактам (2). Проводник защитного заземления (PE-проводник) к УЗО никак не подключается.

При нажатии кнопки (3) контакты (4) (а также ещё один контакт, скрытый за узлом (5)) замыкаются, и УЗО пропускает ток. Соленоид (5) удерживает контакты в замкнутом состоянии после того, как кнопка отпущена.

Катушка (6) на тороидальном сердечнике является вторичной обмоткой дифференциального трансформатора тока, который окружает фазный и нулевой проводники. Проводники проходят сквозь тор, но не имеют электрического контакта с катушкой . В нормальном состоянии ток, текущий по фазному проводнику, точно равен току, текущему по нулевому проводнику, однако эти токи противоположны по направлению. Таким образом, токи взаимно компенсируют друг друга и в катушке дифференциального трансформатора тока ЭДС отсутствует.

Любая утечка тока из защищаемой цепи на заземленные проводники (например, прикосновение человека, стоящего на мокром полу, к фазному проводнику) приводит к нарушению баланса в трансформаторе тока: через фазный проводник «втекает больше тока», чем возвращается по нулевому (часть тока утекает через тело человека, то есть помимо трансформатора). Несбалансированный ток в первичной обмотке трансформатора тока приводит к появлению ЭДС во вторичной обмотке. Эта ЭДС сразу же регистрируется следящим устройством (7), которое отключает питание соленоида (5). Отключенный соленоид больше не удерживает контакты (4) в замкнутом состоянии, и они размыкаются под действием силы пружины, обесточивая неисправную нагрузку.

Устройство спроектировано таким образом, что отключение происходит за доли секунды, что значительно снижает тяжесть последствий от поражения электрическим током.

Кнопка проверки (8) позволяет проверить работоспособность устройства путем пропускания небольшого тока через оранжевый тестовый провод (9). Тестовый провод проходит через сердечник трансформатора тока, поэтому ток в тестовом проводе эквивалентен нарушению баланса токонесущих проводников, то есть УЗО должно отключиться при нажатии на кнопку проверки. Если УЗО не отключилось, значит оно неисправно и должно быть заменено.

Применение

В России применение УЗО стало обязательным с принятием 7-го издания Правил устройства электроустановок (ПУЭ). Как правило, в случае бытовой электропроводки одно или несколько УЗО устанавливаются на DIN-рейку в электрощите.

Многие производители бытовых устройств, которые могут быть использованы в сырых помещениях (например, фены), предусматривают для таких устройств встроенное УЗО. В ряде стран подобные встроенные УЗО являются обязательными.

Условия срабатывания УЗО:

  • Прямое прикосновение человека к частям находящимся под напряжением и его контакте с «землей».
  • Повреждение основной изоляции и контакте токоведущих частей с заземленным корпусом.
  • Замена нулевого и заземляющего проводников.
  • Замена фазного и нулевого проводников и прикосновении человека к частям оказавшимся под напряжением и одновременном его контакте с «землей».
  • Обрыв нулевого проводника до (и после УЗО) и прикосновении человека к токоведущим или оказавшимся под напряжением частям и одновременном его контакте с «землей».

Проверка

Рекомендуется ежемесячно проверять работоспособность УЗО. Наиболее простой способ проверки - нажатие кнопки «тест », которая обычно расположена на корпусе УЗО (как правило, на кнопке «тест» нанесено изображение большой буквы «Т»). Тест кнопкой может производиться пользователем, то есть квалифицированный персонал для этого не требуется. Если УЗО исправно и подключено к электрической сети, то оно при нажатии кнопки «тест» должно сразу же сработать (то есть отключить нагрузку). Если после нажатия кнопки нагрузка осталась под напряжением, то УЗО неисправно и должно быть заменено.

Тест нажатием кнопки не является полной проверкой УЗО. Оно может срабатывать от кнопки, но не пройти полный лабораторный тест, включающий измерение отключающего дифференциального тока и времени срабатывания.

Кроме того, нажатием кнопки проверяется само УЗО, но не правильность его подключения. Поэтому более надежной проверкой является имитация утечки непосредственно в цепи, которая является нагрузкой УЗО. Такой тест желательно проделать хотя бы один раз для каждого УЗО после его установки. В отличие от нажатия кнопки, пробная утечка должна проводиться только квалифицированным персоналом.

Ограничения

УЗО может значительно улучшить безопасность электроустановок, но оно не может полностью исключить риск поражения электрическим током или пожара. УЗО не реагирует на аварийные ситуации, если они не сопровождаются утечкой из защищаемой цепи. В частности, УЗО не реагирует на короткие замыкания между фазами и нейтралью.

УЗО также не сработает, если человек оказался под напряжением, но утечки при этом не возникло, например, при прикосновении пальцем одновременно и к фазному, и к нулевому проводникам. Предусмотреть электрическую защиту от таких прикосновений невозможно, так как нельзя отличить протекание тока через тело человека от нормального протекания тока в нагрузке. В подобных случаях действенны только механические защитные меры (изоляция , непроводящие кожухи и т. п.), а также отключение электроустановки перед её обслуживанием.

Некоторые типы УЗО (УЗО−Д со вспомогательным источником питания , см. ) нуждаются в питании, которое они получают от защищаемой цепи. Поэтому потенциально опасной является ситуация, когда в защищаемой цепи выше УЗО нулевой проводник отключен, а фазный остается под напряжением . В этом случае УЗО будет неспособно отключить цепь, так как разность потенциалов в защищаемой цепи недостаточна для функционирования УЗО. Так называемые электромеханические УЗО не нуждаются в питании и поэтому свободны от указанного недостатка.

История

В начале 1970-х годов большинство УЗО выпускались в корпусах типа автоматических выключателей . С начала 1980-х годов, в США, большинство бытовых УЗО были уже встроенными в розетки . В России УЗО начали применяться гораздо позже - примерно с 1994-1995 годов. И до сих пор используются преимущественно УЗО для монтажа в электрощите на DIN-рейку , а встроенные УЗО пока широкого распространения не получили.

Классификация УЗО

По способу действия

  • УЗО без вспомогательного источника питания
  • УЗО−Д со вспомогательным источником питания:
    • выполняющие автоматическое отключение при отказе вспомогательного источника с выдержкой времени и без неё:
      • производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
      • не производящие автоматическое повторное включение при восстановлении работы вспомогательного источника
    • не производящие автоматическое отключение при отказе вспомогательного источника:
      • способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника
      • не способные произвести отключение при возникновении опасной ситуации после отказа вспомогательного источника

По способу установки

  • стационарные с монтажом стационарной электропроводкой
  • переносные с монтажом гибкими проводами с удлинителями

По числу полюсов

  • однополюсные двухпроводные
  • двухполюсные
  • двухполюсные трехпроводные
  • трехполюсные
  • трехполюсные четырёхпроводные
  • четырёхполюсные

По виду защиты от сверхтоков и перегрузок по току

  • без встроенной защиты от сверхтоков
  • со встроенной защитой от сверхтоков
  • со встроенной защитой от перегрузки
  • со встроенной защитой от коротких замыканий

По потере чувствительности в случае двойного заземления нулевого рабочего проводника

На стадии рассмотрения

По возможности регулирования отключающего дифференциального тока

  • нерегулируемые
  • регулируемые:
    • с дискретным регулированием
    • с плавным регулированием

По стойкости при импульсном напряжении

  • допускающие возможность отключения при импульсном напряжении
  • стойкие при импульсном напряжении

По условиям функционирования

  • УЗО−Д типа АС - устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий;
  • УЗО−Д типа А - устройство защитного отключения, реагирующее на переменный сину­соидальный дифференциальный ток и пульсирующий постоянный диффе­ренциальный ток, возникающие внезапно, либо медленно возрастающие;
  • УЗО−Д типа В. УЗО реагирует на переменный, постоянный и выпрямленный дифференциальные токи.
  • УЗО−Д типа S - селективное (с выдержкой по времени отключения), это может быть необходимо там, где используется АВР.
  • УЗО−Д типа G - то же что и S, но с меньшей выдержкой времени.

Применение УЗО типа А целесообразно в основанных случаях, напри­мер, в цепях, содержащих потребители с тиристорным управлением без разделительного трансформатора. УЗО типа В применяют в промышленных электроустановках со смешанным питанием - переменным, выпрямленным и постоянным токами.

Характеристики УЗО

Характеристики, общие для всех УЗО−Д

³=== Только для УЗО−Д без встроенной защиты от коротких замыканий ===

  • Вид защиты от коротких замыканий
  • Номинальный условный ток короткого замыкания I nc - указанное изготовителем действующее значение ожидаемого тока, который способно выдержать УЗО−Д, защищаемое устройством защиты от коротких замыканий, при заданных условиях эксплуатации без необратимых изменений, нарушающих его работоспособность
  • Номинальный условный дифференциальный ток при коротком замыкании I Δc - указанное изготовителем значение ожидаемого дифференциального тока, которое способно выдержать УЗО−Д, защищаемое устройством защиты от коротких замыканий, при заданных условиях эксплуатации без необратимых изменений, нарушающих его работоспособность

См. также

Примечания

Ссылки

  • ГОСТ Р 50807-95 (2003) Устройства защитные, управляемые дифференциальным (остаточным) током. Общие требования и методы испытаний (МЭК 755-83).
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • HTML-версия учебно-справочного пособия «УЗО». Издательство «Энергосервис», 2003.

УЗО в любой электрической цепи является очень важным элементом. Основное предназначение УЗО состоит в обеспечении защиты человека от поражения током при контакте с токоведущими частями. Помимо этого, УЗО, принцип работы которого будет рассмотрен в данной статье, предотвращает вероятность возникновения пожаров, которые могут быть спровоцированы возгоранием электропроводки.

В определенных ситуациях УЗО, принцип работы которого достаточно прост, прекращает подачу на защищаемую линию напряжения. Происходит это в случае, если человек прикасается к токоведущим частям электроустановок, и к элементам нетоковедущим, которые в результате пробоя изоляции оказались под напряжением. Еще одной причиной размыкания контактов является возникновение утечки тока на корпус электроустановки или землю.

Рассмотрение принципа работы УЗО в общем и на конкретном примере

Когда сдаются недорогие квартиры от застройщика , то вся электрика, в том числе УЗО и диффавтоматы, а также разводка и автоматы отключения, уже установлены. Если же вы строите свой дом или хотите установить УЗО в квартире своими руками, то вам стоит знать принцип действия этого устройства и правила его установки.

УЗО (принцип работы основан на определении входящих и исходящих токов на входе в систему) может реагировать на минимальные утечки и выполнять свою защитную функцию. Для измерения утечки, в прибор установлен такой чувствительный элемент, как дифференциальный трансформатор, обладающий тремя обмотками.

Принцип действия УЗО легко можно понять на конкретном примере. Если человек прикасается к токоведущим частям установки, или же возникает пробой изоляции на ее корпусе, величина тока, текущего по фазному проводу, превысит величину тока в нулевом проводе.

Суммарный (итоговый) поток магнитной индукции, при этом, обязательно изменится, будет отличаться от нуля и будет являться причиной наведения в управляющей обмотке тока. Реле, к которому обмотка подключена, сработает, и в движение будет приведен расцепитель контактов силовых защитного устройства.

В результате которого за доли секунды обесточивается опасная электроустановка, обеспечивает сохранность человеческого здоровья.

Подключение УЗО к сети однофазной: основные правила

Схема УЗО указана на корпусе прибора и позволяет понять принцип его действия, правильно подключить устройство в схему защиты электрической цепи, избегая некорректной работы устройства или выхода его из строя.

Схема УЗО, по которой оно подключается в систему электроснабжения, зависит от различных параметров и факторов. В жилых помещениях, как правило, используется однофазный вариант электропроводки с номинальным напряжением 220 В.

Перед установкой нужно не только понять принцип работы УЗО в однофазной сети, но и ознакомиться с правилами безопасности.

Принцип работы УЗО и схема подключения подразумевают использование двух проводов проводки, подключаемых к входным клеммам, и двух проводов на выход прибора, подсоединяемых к соответствующим выходным клеммам. Устанавливать прибор нужно только при отключенном напряжении. Перед осуществлением установки, нужно убедиться, что в щитке для выбранного прибора достаточно места.

И схема подключения его достаточно просты. Существует несколько вариантов установки этого устройства, но принцип, в целом, остается неизменным.

Наиболее распространенным и доступным является вариант, при котором устройство стоит на входе в дом/квартиру. Недостаток этого варианта заключается в том, что при срабатывании прибора обесточивается все жилое помещение, а определять причину происходящего сложно.

Более дорогостоящим, однако, очень удобным является вариант подключения с установкой нескольких УЗО — в этом случае, каждое устройство будет отвечать за отдельную группу розеток или освещения.

    Природный газ является не только самым экономичным и эффективным, но и наиболее рискованным с точки зрения пожаробезопасности и взрывобезопасности видом топлива — именно поэтому устройство...
    1. Для того чтобы выбрать материал в том количестве, которое вам понадобится, необходимо знать, как составляется смета на фундаментные работы. Вам понадобится большое количество оборудования и...
  • Ознакомиться с назначением и принципом действия устройств защитного отключения (УЗО), классификацией и видами различных УЗО. Усвоить общие принципы проведения испытаний УЗО на примере УЗО F200 производстваABB.

    Приборы и оборудование

    1) измеритель параметров электроустановок MI3102.

    2) Устройство защитного отключения типа F200 производства компанииABB.

    Теоретические сведения

    Устройство защитного отключения (сокр. УЗО ; более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током , сокр. УЗО−Д ) или выключатель дифференциального тока (ВДТ ) или защитно-отключающее устройство (ЗОУ ) - механический коммутационный аппарат или совокупность элементов, которые при достижении (превышении) дифференциальным током заданного значения при определённых условиях эксплуатации должны вызвать размыкание контактов. Может состоять из различных отдельных элементов, предназначенных для обнаружения, измерения (сравнения с заданной величиной) дифференциального тока и замыкания и размыкания электрической цепи (разъединителя).

    Основная задача УЗО - защита человека от поражения электрическим током и от возникновения пожара, вызванного утечкой тока через изношенную изоляцию проводов и некачественные соединения.

    Широкое применение также получили комбинированные устройства, совмещающие в себе УЗО и устройство защиты от сверхтока, такие устройства называются УЗО−Д со встроенной защитой от сверхтоков, либо просто диффавтомат . Часто диффавтоматы снабжаются специальной индикацией, позволяющей определить, по какой причине произошло срабатывание (от сверхтока или от дифференциального тока).

    Рис. 1. Устройства защитного отключения производства фирмы ABB .

      Назначение и функции УЗО. Принцип действия УЗО.

    УЗО предназначены для

      Защиты человека от поражения электрическим током при косвенном прикосновении (прикосновение человека к открытым проводящим нетоковедущим частям электроустановки, оказавшимся под напряжением в случае повреждения изоляции), а также при непосредственном прикосновении (прикосновение человека к токоведущим частям электроустановки, находящимся под напряжением). Данную функцию обеспечивают УЗО соответствующей чувствительности (ток отсечки не более 30мА).

      Предотвращения возгораний при возникновении токов утечки на корпус или на землю.

    УЗО может значительно улучшить безопасность электроустановок, но оно не может полностью исключить риск поражения электрическим током или пожара. УЗО не реагирует на аварийные ситуации, если они не сопровождаются утечкой из защищаемой цепи. В частности, УЗО не реагирует на короткие замыкания между фазами и нейтралью.

    УЗО также не сработает, если человек оказался под напряжением, но утечки при этом не возникло, например, при прикосновении пальцем одновременно и к фазному, и к нулевому проводникам. Предусмотреть электрическую защиту от таких прикосновений невозможно, так как нельзя отличить протекание тока через тело человека от нормального протекания тока в нагрузке. В подобных случаях действенны только механические защитные меры (изоляция, непроводящие кожухи и т. п.), а также отключение электроустановки перед ее обслуживанием.

    Принцип работы УЗО основан на измерении баланса токов между входящими в него токоведущими проводниками с помощью дифференциального трансформатора тока (рис.3). Если баланс токов нарушен, то УЗО немедленно размыкает все входящие в него контактные группы, отключая таким образом неисправную нагрузку.

    УЗО измеряет алгебраическую сумму токов, протекающих по контролируемым проводникам (двум для однофазного УЗО, четырем для трехфазного и т. д.): в нормальном состоянии ток, «втекающий» по одним проводникам, должен быть равен току, «вытекащему» по другим, то есть сумма токов, проходящих через УЗО равна нулю (точнее, сумма не должна превышать допустимое значение). Если же сумма превышает допустимое значение, то это означает, что часть тока проходит помимо УЗО, то есть контролируемая электрическая цепь неисправна - в ней имеет место утечка.

    С точки зрения вопросов электробезопасности УЗО принципиально отличаются от устройств защиты от сверхтока (предохранителей) тем, что УЗО предназначены именно для защиты от поражения электрическим током, поскольку они срабатывают при утечках тока значительно меньших, чем предохранители (обычно от 2 ампер и более для бытовых предохранителей, что во много раз превышает смертельное для человека значение). УЗО должны срабатывать за время не более 25-40 мс, то есть до того, как электрический ток, проходящий через организм человека, вызовет фибрилляцию сердца - наиболее частую причину смерти при поражениях электрическим током.

    Рис. 3. Принцип действияУЗО

    Обнаружение токов утечки при помощи УЗО является дополнительным защитным мероприятием, а не заменой защиты от сверхтоков при помощи предохранителей, так как УЗО никак не реагирует на неисправности, если они не сопровождаются утечкой тока (например, короткое замыкание между фазным и нулевым проводниками).

    УЗО с отключающим дифференциальным током порядка 300 мА и более иногда применяются для защиты больших участков электрических сетей (например, в компьютерных центрах), где низкий порог привел бы к ложным срабатываниям. Такие низкочувствительные УЗО выполняют противопожарную функцию и не являются эффективной защитой от поражения электрическим током.

    Для многих уже не новость, что современная бытовая электрическая сеть обязательно должна иметь защиту УЗО. Тем, кто ещё ничего не знает о таких защитных элементах, скажем, что это – основа человеческой безопасности. Также устройство способствует предотвращению пожаров, вызванных возгоранием электрической проводки. Поэтому знакомство с этим элементом защиты и автоматики не будет лишним. Давайте поговорим подробно об устройстве, из чего оно конструктивно устроено и каков принцип действия УЗО?

    Как возникает ток утечки?

    Чуть ниже мы рассмотрим для чего необходимо УЗО, но сначала разберёмся, что такое токовая утечка? Вся работа устройства связана именно с этим понятием.

    Если сказать простыми словами, то утечкой тока называют его протекание из фазного проводника в землю по пути, который для этого является нежелательным и совсем непредназначенным. Это может быть корпус электрического оборудования или бытового прибора, прутья металлической арматуры либо водопроводные трубы, сырые оштукатуренные стены.

    Токовая утечка возникает при нарушениях изоляции, которые могут произойти по ряду причин:

    • старение в результате длительного срока эксплуатации;
    • механическое повреждение;

    • термическое воздействие в случае, когда электрооборудование работает в режиме перегруза.

    Опасность токовой утечки состоит в том, что при нарушении изоляции электрической проводки на описанных выше объектах (корпус прибора, водопроводная труба или оштукатуренная сырая стена) появится потенциал. Если человек к ним прикоснётся, то выступит в роли проводника, через который ток будет уходить в землю. Величина этого тока может быть таковой, что вызовет самые печальные последствия, вплоть до смерти.

    На видео демонстрация действия УЗО

    Как определить, есть ли в вашем доме токовая утечка? Первым признаком этого явления станет еле ощутимое воздействие электричества, то есть когда вы к чему-то прикасаетесь, вас как бы слегка бьёт током. Наиболее часто это опасное явление наблюдается в ванных комнатах. Для того чтобы гарантировать себе безопасность в собственной же квартире, её надо оборудовать защитными элементами.

    Применяют для этой цели УЗО (расшифровываются как устройства защитного отключения) либо дифференциальные автоматы.

    Что лежит в основе срабатывания УЗО?

    Принцип работы УЗО основывается на методе измерений. На входе и выходе регистрируются показания протекающих через трансформатор токов.

    Если входное токовое показание выше, чем на выходе, значит, в цепи где-то имеется токовая утечка и защитное устройство отключается. Если эти показания одинаковые, то срабатывания УЗО не происходит.

    Поясним немного подробнее этот принцип для двухпроводной и четырёхпроводной системы. УЗО в однофазной сети не срабатывает, когда по проводникам фазы и нейтрали протекают одинаковой величины токи. Для трёхфазной сети необходимы одинаковые показания тока в нулевом проводе и суммы токов, проходящих по фазным жилам. В обоих вариантах сети, когда есть разница в токовых величинах, это свидетельствует об изоляционном пробое. Значит, через это место пройдёт токовая утечка, и устройство защитного отключения сработает.

    УЗО после этого нельзя включать, пока не будет обнаружено место повреждения.

    Давайте весь этот теоретический принцип работы УЗО переведём на практический пример. В домашнем распредщитке произведена установка устройства защитного отключения с двумя полюсами. К его верхним клеммам выполнено подключение вводного двухжильного кабеля (фазы и ноля). На нижние клеммы подсоединяются ноль с фазой, идущие к какой-то нагрузке, предположим, в розетку, питающую водонагревательный бойлер.

    Защитное заземление корпуса бойлера выполняется проводом в обход УЗО.

    Если в электросети нормальный режим, то перемещение электронов осуществляется по фазному проводу от вводного кабеля на ТЭН бойлера через УЗО. Обратно они двигаются на землю снова через УЗО, но уже по нейтральному проводу.

    Проходящие через устройство токи имеют одинаковую величину, но направление у них противоположное (встречное).

    Предположим ситуацию, когда на ТЭНе повредилась изоляция. Теперь ток через воду частично окажется на корпусе бойлера, а потом уйдёт в землю через провод защитного заземления. Остаток тока вернётся по нейтральному проводу через УЗО, только он уже будет меньше входящего ровно на показание токовой утечки. Эту разницу определяет УЗО, и если цифра будет выше уставки срабатывания, устройство сразу реагирует на разрыв цепи.

    Такой же принцип действия и срабатывания УЗО, если человек прикоснётся к оголённому проводнику или корпусу бытового прибора, на котором появился потенциал. Токовая утечка в такой ситуации происходит через человеческое тело, устройство моментально обнаруживает это и прекращает подачу электричества путём отключения.

    Серьёзных травм не последует, потому что УЗО реагирует почти моментально.

    Конструктивное исполнение

    Конструкция УЗО поможет нам разобраться, каким образом оно реагирует на токовую утечку. Основными рабочими узлами УЗО являются:

    • Трансформатор дифференциального тока.
    • Механизм, с помощью которого происходит разрыв электрической цепи.
    • Электромагнитное реле.
    • Проверочный узел.

    К трансформатору выполнено подключение встречных обмоток – фазы и ноля. Когда сеть работает в нормальном режиме, то эти проводники в трансформаторном сердечнике способствуют наведению магнитных потоков, которые имеют встречное направление относительно друг друга. За счёт противоположной направленности магнитный поток в сумме равняется нулю.

    Наглядно устройство и принцип действия УЗО на следующем видео:

    Во вторичной трансформаторной обмотке выполнено подключение электромагнитного реле, при нормальных рабочих условиях оно находится в покое. Возникла токовая утечка, и картина сразу меняется. Теперь по фазному и нейтральному проводникам начинают проходить различные токовые величины. Соответственно и на трансформаторном сердечнике теперь не будет равных магнитных потоков (они будут разными и по величине, и по направлению).

    Во вторичной обмотке появится ток и, когда его значение достигнет заданного, сработает электромагнитное реле. Его подключение выполнено в связке с расцепляющим механизмом, он мгновенно отреагирует и разорвёт цепь.

    В качестве проверочного узла служит обычное сопротивление (какая-то нагрузка, подключение которой выполнено, минуя трансформатор). С помощью этого механизма имитируется токовая утечка и проверяется работоспособное состояние устройства. Каков принцип работы этой проверки?

    Имеется специальная кнопка «ТЕСТ» на УЗО. Её главное назначение – подать ток с фазного провода на проверочное сопротивление и далее на нейтральный проводник, минуя трансформатор. За счёт сопротивления ток на входе и на выходе будет разный, и созданный небаланс запустит механизм отключения. Если при проверке УЗО не отключилось, значит, придётся отказаться от его установки.

    Обратите внимание! Проверку УЗО необходимо проводить регулярно, идеальный вариант – один раз в месяц. Это является требованием пожарной безопасности и не стоит им пренебрегать.

    У разных производителей УЗО внутреннее конструктивное исполнение может отличаться, но общий принцип работы остаётся неизменным.

    Все устройства различаются по принципу срабатывания. Они бывают электронного и электромеханического типа. Электронные УЗО отличаются сложной схемой, им для работы необходимо дополнительное питание. Устройствам электромеханического типа внешнее напряжение не нужно.

    Как обозначается УЗО на схеме?

    Для подключаемых УЗО имеется по два общепринятых символа на схемах.

    Несмотря на конструктивную сложность, обозначение устройства постарались сделать максимально простым. Лишнего ничего нет, только следующие элементы:

    1. Трансформатор дифференциального тока, который схематически изображается как сплюснутое кольцо.
    2. Полюса (два для однофазной сети, четыре для трёхфазной сети).
    3. Выключатель, действующий на разрыв контактов.

    При этом именно полюса имеют два вида обозначения:

    • Иногда они рисуются ровными вертикальными линиями в зависимости от количества (две или четыре).
    • В других случаях из соображения компактности рисуется одна вертикальная ровная линия, а количество полюсов наносится на неё в виде маленьких косых чёрточек.

    Основные рабочие характеристики УЗО

    Чтобы устройство сработало в нужный момент, необходимо его правильно выбрать согласно рабочим характеристикам и подключить.

    • Основным параметром является значение номинального тока. Это максимальный ток, который выдерживает данное устройство при длительном эксплуатационном сроке, оставаясь в рабочем состоянии и сохраняя защитные характеристики. Вы найдёте эту цифру на лицевой панели устройства, она должна соответствовать одному из показаний в стандартном ряду – 6, 10, 16, 25, 32, 40, 63, 80, 100 А. Этот параметр УЗО зависит от нагрузки защищаемой линии и сечения проводников.

    Схема подключения УЗО предусматривает совместную установку этого устройства с автоматическими выключателями.

    Это важно помнить, потому что УЗО защищает лишь от токовых утечек, а автомат среагирует на отключение цепи в режиме короткого замыкания и перегруза.

    На видео показано, можно ли подключать УЗО, если в квартире нет заземления:

    По номинальному току УЗО надо выбирать на порядок выше, чем установленный с ним в паре автомат.

    • Следующий важный параметр – номинальный отключающий дифференциальный ток. Это и есть необходимое значение токовой утечки для отключения УЗО. У дифференциальных токов также существует стандартный ряд, величины в нём нормируются в миллиамперах – 6, 10, 30, 100, 300, 500 мА. Но на УЗО эту цифру обозначают в амперах – соответственно, 0,006, 0,01, 0,03, 0,1, 0,3, 0,5 А. Этот параметр вы тоже найдёте на корпусе устройства.

    Чтобы защищать людей на УЗО надо выставлять уставку по току утечки 30 мА, потому что величины, которые выше, приведут к поражению, электротравме и даже летальному исходу. Так как наиболее опасной считается среда во влажных помещениях, то на защищающих их УЗО выбирают уставку 10 мА.

    Надеемся, что поняв основное назначение УЗО и принцип его работы, вы не станете пренебрегать этим важным элементом защиты, и сделаете свою жизнь безопасной.

    УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

    Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

    УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

    1. Устройство и принцип работы УЗО

    И так для наглядности представим простейшую схему подключения через УЗО лампочки:

    Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I 1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I 2 равна величине тока I 1 и составляет 5 Ампер.

    Схема подключения УЗО в электросети (когда нулевой рабочий и нулевой защитный проводники разделены):

    ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

    1. Ошибки в схемах подключения из-за которых выбивает УЗО.

    Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

    Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

    Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

    В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

    Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

    Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

    1. Как выбрать УЗО? Типы и характеристики УЗО.

    Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим .

    УЗО выбирается по его основным характеристикам. К ним относятся:

    1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
    2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
    3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
    4. Тип тока —постоянный (обозначается «-«) или переменный (обозначается «~»);
    5. Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).

    Выбор УЗО основывается на следующих критериях:

    — По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

    U ном. УЗО U ном. сети

    При однофазной сети требуется двухполюсное УЗО , при трехфазной сети четырехполюсное .

    — По номинальному току: Номинальный ток УЗО должен быть больше либо равен расчетному току защищаемой им цепи, т.е. тому току на который рассчитана данная электрическая сеть:

    I ном. УЗО I расч. сети

    Расчет тока сети можно произвести с помощью нашего , либо его можно определить самостоятельно по формуле

    I сети = P сети *К п, Ампер

    где: P сети — мощность сети, в килоВаттах; К п — коэффициент перевода равный: 1,52 -для сети 380 Вольт или 4,55 - для сети 220 Вольт:

    После расчета тока электросети принимаем ближайшее большее стандартное значение номинального тока УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д., при этом рекомендуется принять УЗО с номинальным током на ступень выше рассчитанного, например, если в результате расчета ток сети составил 22 Ампера, то ближайшим стандартным значением номинального тока УЗО будет 25 Ампер, однако выбрать УЗО следует с номинальным током на ступень выше, т.е. 32 Ампера.

    Мощность сети определяется путем суммирования мощностей всех электроприемников подключаемых в сеть защищаемую рассчитываемым УЗО:

    P сети =(P 1 + P 2 …+ P n)*К с , кВт

    где: P 1 , P 2 , P n — мощности отдельных электроприемников в килоВаттах; К с — коэффициент спроса (К с =от 0,65 до 0,8) в случае если в сеть подключается всего 1 электроприемник или группа электроприемников которые включаются в сеть одновременно К с =1.

    В качестве мощности сети так же можно принять максимальную разрешенную к использованию мощность, например из технических условий, проекта или договора электроснабжения при их наличии.

    Т.к. УЗО не имеет защиты от токов короткого замыкания, оно должно быть защищено установленным в цепи предохранителем или автоматическим выключателем. Номинальный ток УЗО так же можно выбрать исходя из номинального тока предохранителя или автоматического выключателя , при этом рекомендуется что бы номинальный ток УЗО был на ступень выше номинального тока аппарата защиты.

    Например: Вы определили расчетный ток сети который составил 22А (Ампера), из линейки стандартных номиналов: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 25А, 32А, 40А, 50А, 63А, вы выбрали ближайшее значение номинального тока автоматического выключателя — 25А, тогда УЗО вам рекомендуется взять с номинальным током 32А.

    — По дифференциальному току:

    Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

    В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети - из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

    Δ I сети =((0.4*I сети)+(0.01*L провода))*3, миллиАмпер

    где: I сети — ток сети (рассчитанный по формуле выше), в Амперах; L провода — общая длина проводки защищаемой электросети в метрах.

    Рассчитав Δ I сети принимаем ближайшее большее стандартное значение дифференциального тока УЗО Δ I УЗО :

    Δ I УЗО ⩾ Δ I сети

    Стандартными величинами дифференциального тока УЗО являются : 6, 10, 30, 100, 300, 500мА

    Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи: 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и , а дифференциальный ток 30мА подходит для общей защиты электросети.

    В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

    — По типу УЗО:

    УЗО бывают двух типов: электромеханическое и электронное . Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

    10