Что называется моментом импульса тела относительно оси. Момент импульса материальной точкии твердого тела

Направление вектора с определяется следующим образом. Во–первых, с направлен перпендикулярно плоскости, в которой расположены а и b . Из двух возможных направлений выбирается то, куда перемещается буравчик (правый винт), вращающийся от направления первого сомножителя ко второму по кратчайшему направлению (см.рис.1). Обозначается векторное произведение а и b как [а ,b ] или a ´b .

Из определения векторного произведения видно, что оно обладает следующими очевидными свойствами:

[а ,b ] = – [b ,а ]

[a ,a ] = 0.

Можно также доказать, что:

= [а ,ab ] = a[а ,b ],

где a – скаляр,

[а+b ,c ] =[а ,c ]+ [b ,c ].

Иногда полезно иметь в виду, что величина векторного произведения двух векторов равна площади параллелограмма, двумя смежными сторонами которого являются эти векторы. Или иначе: величина векторного произведения двух векторов равна удвоенной площади треугольника, двумя сторонами которого являются эти векторы.

1. Моментом импульса материальной точки относительно некоторой избранной точки (полюса –в терминологии теоретической механики) называется вектор:

L= [r ,p ].

Здесь r – радиус-вектор материальной точки, начало которого совпадает с полюсом, а конец с материальной точкой, р – импульс материальной точки.

Величину момента импульса часто удобно вычислять как произведение

L= rmv ,

где h – плечо силы, т.е. расстояние между полюсом и линией действия силы (рис. 3).

3. Связь между L и M дается уравнением моментов:

где M – момент сил, приложенных к данной материальной точке. Существенно, что L и М вычисляются относительно одного и того же полюса.

4. Момент импульса аддитивен. Момент импульса системы материальных точек равен сумме моментов отдельных точек, составляющих систему. Все моменты должны определяться относительно одного полюса.

5. Производная по времени от момента импульса системы точек определяется уравнением моментов:

где М внеш – сумма моментов внешних сил, действующих на точки системы. Из этого уравнения следует, что момент импульса замкнутой системы тел сохраняется. Данное утверждение носит название закона сохранения момента импульса.

6. Моментом импульса или моментом силы относительно оси называется проекция соответствующего момента на эту ось . При этом полюс обязательно должен лежать на оси.

7. Для момента импульса системы точек справедливо равенство:

L = [R ци ,P ]+ L 0 ,

где L 0 – момент импульса системы точек относительно ее центра масс, R ци – радиус–вектор центра масс системы, Р – импульс системы. Это соотношение называют теоремой Кёнига для момента импульса.

8. Момент системы сил, определяется как сумма моментов сил, приложенных к точкам системы. Как и момент каждой сил, составляющих систему сил, он зависит от выбора полюса, относительно которого вычисляются эти моменты:

M = [R ,F ]+ M ",

где M – момент системы сил относительно старого полюса О ,M "– момент импульса системы точек относительно нового полюса О’ , R – радиус-вектор направленный от старого полюса к новому, F – сумма сил, приложенных к точкам системы (Рис. 4). Как видим, в случае F = 0, момент системы сил не зависит от выбора полюса. Таким свойством обладает в частности пара сил , т.е. система двух равных по величине и противоположных по направлению сил.

Момент пары, как нетрудно убедиться, направлен перпендикулярно плоскости, в которой лежат силы, составляющие пару, в направлении, совпадающем с направлением перемещения буравчика (винта), вращаемого этой парой. Величина момента пары равна произведению величины сил, составляющих пару на расстояние между линиями действия этих сил. Это расстояние называется плечом пары сил или просто: плечом пары.

9. Если тело движется в центральном поле, то момент силы, действующей на тело в этом поле, относительно центра поля равен нулю. Поэтому момент импульса тела относительно центра поля постоянен.

Задача 1

Шайба движется по гладкой горизонтальной плоскости и испытывает в точке 0 упругий удар с гладкой неподвижной стенкой. Найти точки, относительно которых момент импульса шайбы остается постоянным в этом процессе. Угол между направлением скорости шайбы и нормалью к стенке равен a.

Решение

Движение шайбы представлено на рис.1. Так как стенка гладкая то F тр = 0, и N – сила реакции при ударе направленная перпендикулярно стенке, ее момент равен нулю относительно любой точки, лежащей на прямой OO ", перпендикулярной стенке.

Согласно уравнению моментов d L /dt = M . Так как относительно точек прямой ОО " момент силы реакции M = 0, то d L /dt = 0 и L = const . Итак, момент импульса шайбы сохраняется относительно любой точки, лежащей на прямой ОО ". Другие силы, действующие на шайбу, как нетрудно понять, не изменяют ее момента (разберитесь с этим сами).

Поскольку шайбы движутся по гладкой горизонтальной плоскости, то сумма внешних сил – силы тяжести и силы реакции стола, действующих на каждую шайбу, равна нулю, поэтому такая система ведет себя как замкнутая, и в ней сохраняются импульс и момент импульса. Кроме того, в системе действуют лишь консервативные силы (силы упругости пружины), поэтому сохраняется ее энергия.

Этих трёх законов сохранения достаточно, чтобы решить задачу. Удобнее всего делать это в системе отсчета, связанной с центром инерции. В этой системе отсчета сумма импульсов шайб равна нулю, откуда следует, что в любой момент времени скорости шайб равны по величине и направлены в противоположные стороны. Начальные скорости шайб относительно плоскости равны соответственно v 0 и нулю. Поэтому скорость центра инерции:

Скорости шайб по отношению к центру инерции равны, соответственно:

Так как в начальный момент времени пружина не деформирована, то энергия системы относительно ее центра масс определяется в этот момент лишь кинетической энергией частиц:

Момент импульса L 1 системы шайб относительно центра инерции в этот же момент времени равен:

Когда пружина окажется максимально растянутой, скорости шайб опять будут направлены перпендикулярно пружине, иначе шайбы удалялись бы или приближались друг к другу, т.е. длина пружины либо увеличивалась, либо уменьшалась бы, но, в любом из этих случаев, не была бы в этот момент максимальной. Если обозначить величину скорости шайб в этот момент через u ", длину пружины в этот момент через l ", то

В выражении для энергии второе слагаемое представляет собой потенциальную энергию растянутой на длину l’ – l 0 пружины.

В силу законов сохранения энергии и момента импульса имеем следующие уравнения:

Выразив новую скорость шайб v’ из второго из этих уравнений, и подставив её в первое уравнение, найдём:

откуда приходим к уравнению:

После сокращения обеих частей уравнения на l’– l 0 получим:

а учитывая малую величину удлинения пружины (l’– l 0 << l 0), приходим к ответу:

Из полученного ответа видно, что удлинение пружины будет малым, если выполнено неравенство:

Задача 3

По гладкой горизонтальной плоскости движется небольшое тело массой m , привязанное к невесомой нерастяжимой нити, другой конец которой втягивают в отверстие O (рис. 1) с постоянной скоростью u . Найти угловую скорость тела в зависимости от расстояния r тела до отверстия, если в начальный момент оно находилось на расстоянии r 0 , а угловая скорость нити была равна w 0 . Найти силу натяжения нити N как функцию расстояния r тела до отверстия О и площадь, которую опишет тело за один оборот.

Решение

Рис. 1

Поскольку сила тяжести, действующая на шарик, уравновешивается силой реакции стола, а момент силы N натяжения нити относительно точки O равен нулю, то момент импульса тела L относительно точки О сохраняется. Запишем выражение для момента импульса тела:

L = [r ,p ] = m [r ,v ].

Разложим скорость тела v на две составляющие: v " – поперек направления нити и u – вдоль нити (рис.2):

v = v " + u .

Так как векторное произведение [r ,u ] = 0, то:

L = m [r ,v " + u ] = m [r ,v "].

Поскольку v’= wr , где w – угловая скорость, и векторы r иv " взаимно ортогональны, то величина момента:

L=mru "= mr 2 w.

Поскольку L = const , а в начальный момент w=w 0 , r= r 0 , то:

mr 2 w= mr 0 2 w 0 ,

Рис. 2

Для нахождения величины силы натяжения нити N удобнее всего воспользоваться соотношением между скоростью изменения кинетической энергии тела Т и мощностью Р , действующих на него сил:

В нашем случае:

поскольку u=const .

Так как , то:

Производная dr /dt – это проекция скорости тела на направление нити (радиальное направление) и, поскольку нить укорачивается, т.е. тело приближается к отверстию со скоростью u , то dr /dt = u .

Окончательно:

Для мощности имеем:

P= (N ,v ) = (N ,u+v ") = (N ,u ) + (N ,v ") = (N ,u ) = Nu .

Здесь мы учли, что N и v " взаимно ортогональны, а N и u направлены в одну и ту же сторону вдоль нити. Итак, получаем:

Найдём теперь площадь фигуры, которую опишет тело за один оборот (она затенена на Рис. 3). Для этого найдём площадь треугольника (он заштрихован на рис. 3), которую опишет нить за малый промежуток времени dt . Для этого учтём, что величина этой площади dS может быть записана как половина модуля векторного произведения векторов r и d s = v dt :

где L – величина момента импульса.

Так как L=const , то искомая площадь:

Рис. 3

где tвремя одного оборота тела вокруг точки О .

Осталось найти это время. Для этого учтём, что за один оборот нить повернётся на угол 2p. С другой стороны, угол поворота d j за малый промежуток времени dt равен произведению wdt. Угловая скорость найдена ранее:

.

Проинтегрировав это равенство по периоду, найдём:

Задача 4

Нить длины l с подвешенным к ней небольшим телом массы m отклонена от вертикали на угол a. Тело толкнули в горизонтальном направлении перпендикулярно нити. При его последующем движении угол отклонения нити в тот момент, когда скорость тела вновь была направлена горизонтально, оказался равным b. Найти начальную скорость тела, и скорость в точке, где нить была отклонена на угол b.

Решение

В процессе движения тела скорость его всё время остаётся перпендикулярной нити, так как нить нерастяжима. Это означает, что сила натяжения нити не совершает работы. Как следствие этого механическая энергия тела остаётся постоянной, так как только сила тяжести (она консервативна) совершает работу над телом.

Рассмотрим теперь момент импульса тела, выбрав в качестве полюса, относительно которого определяем момент, точку подвеса О нити. Вектор момента импульса перпендикулярен плоскости, образуемой нитью и вектором скорости. Поскольку тело движется, эта плоскость непрерывно изменяет своё положение, следовательно, изменяется и вектор момента импульса. Так что вектор момента импульса тела не сохраняется. Однако, как нетрудно убедиться, проекция вектора момента импульса на вертикальное направление, то есть момент импульса относительно нити, будет сохраняться. Для этого рассмотрим момент сил, приложенных к телу относительно точки О . Этих сил две – сила реакции нити и сила тяжести. Но сила натяжения нити направлена вдоль нити, поэтому её момент равен нулю.

Что касается момента силы тяжести M тяж = [r ,m g ], то он перпендикулярен как радиус–вектору r (направлению нити), так и вектору g . Но это означает, что момент силы тяжести всё время направлен горизонтально. Если мы запишем уравнение моментов относительно полюса О :

и спроецируем его на вертикальное направление (ось OZ ), то получим:

т.е. L z = const .

В начальный момент:

L z =L 0 ×sina = mu 0 l sina.

Примем, что в точке, где скорость тела вновь направлена горизонтально, нить отклонена на угол b. Но тогда точно так же:

L z =L 1 ×sinb = mu 1 l sinb.

Здесь v 1 – скорость тела в новом положении. Закон сохранения момента импульса тогда запишется следующим образом:

u 0 sina = u 1 sinb.

Запишем теперь уравнение, выражающее закон сохранения энергии:

.

Исключив отсюда скорость u 1 с помощью закона сохранения момента импульса, получим:

Задача 5

По гладкой горизонтальной плоскости движется гантелька, состоящая из двух небольших шариков массой m и М , соединённых невесомым стержнем длины l . Шарик массы М испытывает абсолютно упругий удар о неподвижную стенку, поверхность которой перпендикулярна скорости шара. Найти скорости шариков после удара, считая, что до удара они двигались с одинаковыми скоростями, в направлении перпендикулярном стержню.

Решение

Поскольку удар упругий, то энергия гантельки сохраняется. Кроме того, сохраняется момент импульса гантельки относительно точки удара О со стенкой, поскольку момент силы реакции N относительно её точки приложения равен нулю.

Запишем эти уравнения:

Здесь мы учли, что радиус-вектор шарика, испытавшего удар, коллинеарен вектору его скорости, поэтому момент импульса этого шарика относительно точки удара равен нулю.

Рис. 1

Согласно второму из получившихся уравнений видим, что u 1 = u 0 , тем самым u 2 = – u 0 . Таким образом, первый шар сразу после удара не изменил своей скорости, а второй начал двигаться назад с прежней по величине скоростью. Это означает, что импульс этой гантельки изменился в результате удара:

Причина изменения импульса гантельки – импульс, переданный гантельке силой реакции стенки.

Задача 6

При каких условиях метеорит, движущийся вдали от Земли со скоростью V 0 , может упасть на поверхность Земли? Влиянием других небесных тел пренебречь.

Решение

Очевидно, падение метеорита на Землю возможно, если минимальное расстояние, на котором проходит его траектория от центра Земли не превышает радиуса Земли (см. Рис. 1).

При движении тела в центральном поле его момент импульса относительно центра этого поля остаётся неизменным:

mV 0 r = mV 1 R (1),

Рис. 1

здесь R – радиус Земли, r – прицельное расстояние метеорита относительно центра Земли, V 0 и V 1 – скорость метеорита вдали и, соответственно, вблизи Земли.

Помимо закона сохранения момента импульса, в данной задаче мы можем воспользоваться ещё и законом сохранения энергии, поскольку поле тяготения является консервативным полем. Потенциальную энергию тела в поле тяготения найдём из закона всемирного тяготения:

Здесь т и М – масса тела и, соответственно, масса того небесного тела, в поле тяготения которого это тело движется, G – постоянная всемирного тяготения, r – расстояние между телами, F r – проекция силы тяготения на радиальное направление. Воспользовавшись соотношением между силой и потенциальной энергией, найдём после интегрирования по dr :

Здесь мы положили постоянную интегрирования равной нулю, что соответствует выбору потенциальной энергии равной нулю на бесконечном удалении от небесного тела (сравните с задачей 1 раздела 5 Движение точки в консервативных полях). Записывая выражение для энергии метеорита вдали от Земли и в точке касания её поверхности, получим:

Потенциальную энергию, при выбранной выше её нормировке, можно записать как – mgR , поскольку сила тяготения, действующая на тело, находящееся на поверхности Земли равна mg :

Тем самым уравнение закона сохранения энергии запишем в виде:

откуда найдём V 1:

Воспользовавшись законом сохранения момента импульса (1), получим с учётом найденной нами скорости V 1:

.

Заметим, что 2mgR = V 2 2 , где V 2 – вторая космическая скорость. Тем самым:

.

Вторая космическая скорость для Земли V 2 составляет 11,2 км/с, а скорость метеоритов V 0 обычно заметно больше, её величина около 30 км/с. Тем самым, для того чтобы метеорит мог упасть на поверхность Земли, его прицельное расстояние должно быть не больше радиуса Земли. А вот для Юпитера, вторая космическая скорость которого более чем в 5 раз превосходит вторую космическую скорость для Земли, прицельное расстояние оказывается приблизительно в 2,5 раза больше радиуса Юпитера, т.е. приблизительно в 25–30 раз больше радиуса Земли.


ДИНАМИКА ТВЕРДОГО ТЕЛА

1. В механике абсолютно твёрдым телом – в дальнейшем просто твердым телом – называют систему материальных точек, расстояния между которыми всё время остаются неизменными.

Рис. 1

2. Поступательным движением твёрдого тела называют такое его движение, при котором любая прямая, жестко связанная с телом остаётся параллельной себе самой. Прямая жестко связанная с телом это такая прямая, расстояние от любой точки которой до любой точки тела неизменно в процессе движения.

3. Вращательным движением твёрдого тела вокруг неподвижной оси называют такое его движение, при котором все его точки, двигаясь в параллельных плоскостях, описывают окружности, центры которых лежат на этой оси. Положение тела тогда задаётся углом его поворота вокруг этой оси.

4. Вектором угловой скорости твёрдого тела называется вектор w , направленный вдоль оси вращения твёрдого тела в ту же сторону, в какую перемещается буравчик, вращающийся вместе с телом (рис.1). Проекция вектора угловой скорости на направление оси вращения (ось OZ на Рис. 1) равна производной по времени от угла поворота твёрдого тела:

w z = d j/dt .

Угол поворота считается положительным, если для наблюдателя, расположенного так, что ось вращения направлена к нему, поворот происходит против часовой стрелки. Соответственно, и проекция w z положительна, если для такого наблюдателя вращение тела происходит против часовой стрелки.

5. Вектор v i скорости произвольной точки твёрдого тела, вращающегося вокруг неподвижной оси, равен векторному произведению векторов угловой скорости и радиус-вектора этой точки:

v i = [w ,r i ].

Начало координат при этом выбрано на оси вращения твёрдого тела (см. Рис. 1).

Может быть ввести (перед пунктом 6) общий случай: вращение вокруг точки, то есть вращение вокруг вращающейся оси? В последней фразе пункта 6 присутствуют слова: "… вращения тела относительно центра масс." Или там поменять на "вращение тела вокруг неподвижной в (с.ц.и.) оси, проходящей через центр масс".

6. Произвольное движение твердого тела в каждый момент времени можно рассматривать как совокупность поступательного и вращательного движений (теорема Эйлера). Точку внутри твёрдого тела, через которую проходит ось вращения можно выбирать произвольно, при этом величина и направление вектора угловой скорости не зависят от выбора этой точки, скорость же поступательного движения тела совпадает со скоростью этой выбранной точки. Физически наиболее обусловлено и практически чаще всего наиболее удобно выбирать ось вращения так, чтобы она проходила через центр масс тела. Тогда движение твердого тела складывается из поступательного движения со скоростью центра масс этого тела и вращения тела относительно оси, проходящей через центр масс.

7. Кинетическая энергия Т твердого тела, вращающегося вокруг неподвижной оси равна:

где w – величина угловой скорости вращения, а I – момент инерции твёрдого тела относительно оси вращения, определяемый равенством:

Здесь Dm i – массы "точек" твёрдого тела, a R i – их расстояния от оси вращения ОО ". Момент инерции в задачах, связанных с вращением твёрдого тела играет роль подобную той, что играет масса тела при его поступательном движении. Под "точкой" твердого тела имеется ввиду физически бесконечно малый элемент объема тела с массой Dm i . Суммирование производится по всем таким объёмам, на которые разбито тело.

Рис. 2

8. Если известен I С – момент инерции твёрдого тела относительно некоторой оси OO , проходящей через его центр инерции, то I – момент инерции твердого тела относительно произвольной, но параллельной ей оси O"O" находится с помощью теоремы Штейнера:

I=I С + md 2

где m – масса твёрдого тела, d – расстояние между осями.

9. В силу теоремы Эйлера для описания движения твёрдого тела необходимо знать скорость движения его центра инерции и угловую скорость вращения. Поэтому система уравнений, определяющих движение твёрдого тела, состоит из уравнения движения центра масс и уравнения моментов:

где М – масса твёрдого тела, а ци – ускорение его центра масс, F внеш – сумма внешних сил, приложенных к твёрдому телу, L – момент импульса твёрдого тела, М внеш – сумма моментов внешних сил, приложенных к нему. Заметим, что L и М внеш могут вычисляться как относительно центра масс, так и относительно любой другой точки (разумеется, при этом точка, относительно которой вычисляются L и М внеш должна быть одной и той же как для L , так и для М внеш ).

Рис. 3

10. Поскольку разложение движения твердого тела на поступательное и вращательное можно производить различными способами, то в некоторых задачах бывает удобно выбирать ось вращения таким образом, чтобы движение твердого тела представлялось как чистое вращение. Положение этой оси будет, вообще говоря, изменяться с течением времени, поэтому ее называют мгновенной осью вращения .

11. Вектор момента импульса твердого тела определяется как сумма моментов "точек" этого тела:

L = S DL i .

12. Направление вектора момента импульса твердого тела, при вращении вокруг произвольной оси, не совпадает, вообще говоря, с направлением этой оси (Рис. 3). Однако в каждом твердом теле существуют три взаимно перпендикулярные оси, проходящие через его центр масс, при вращении вокруг которых векторы L и w совпадают по направлению. Такие оси носят название главных осей инерции . Если тело имеет ось симметрии, то она будет одной из главных осей инерции.

Задача 1

Докажите, что при поступательном движении твёрдого тела все его точки движутся с одинаковыми скоростями.

Решение

Рис. 1

Выберем в теле произвольным образом две точки. Пусть это точки А и В . Обозначим их радиус–векторы r A и r В, а вектор, соединяющий их, обозначим как R . Тогда:

r В = r A + R .

Дифференцируя это равенство по времени (дифференцирование по времени обозначаем точкой), получим:

.

Но вектор R – постоянный вектор, так как, ни его длина, ни направление не изменяются. Действительно, расстояния между точками твёрдого тела неизменны, поэтому длина вектора R также неизменна. Кроме того, тело движется поступательно, поэтому направление вектора R также не изменяется. Поэтому производная вектора R равна нулю, тем самым:

Т.е. скорости выбранных нами точек одинаковы. Но в силу произвольности выбора этих точек, все точки тела имеют такие же скорости.

Задача 2

Докажите, что кинетическую энергию твёрдого тела в самом общем случае можно представить в виде:

,

где V ци – скорость центра масс твердого тела, I С – момент инерции твёрдого тела относительно оси вращения, проходящей через центр масс твердого тела, w – угловая скорость вращения твёрдого тела.

Решение

Согласно теореме Кёнига кинетическую энергию твёрдого тела можно представить как:

Здесь M – масса тела, V ц – скорость его центра инерции, Т 0 – кинетическая энергия тела в системе отсчета, движущейся со скоростью центра инерции. Но в этой системе отсчёта центр инерции неподвижен. Следовательно, движение твёрдого тела в этой системе отсчёта есть вращение вокруг оси, проходящей через центр инерции тела, и кинетическая энергия такого движения равна:

где I С – момент инерции тела относительно оси вращения, проходящей через центр инерции тела, а w – угловая скорость вращения твёрдого тела.

Тем самым утверждение доказано:

.

Задача 3

Докажите, что кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной оси, связана с вектором момента импульса L этого тела и вектором угловой скорости w его вращения следующим образом:

Полюс, относительно которого определяется момент импульса, выбран на оси вращения тела.

Решение

Вектор момента импульса твердого тела определяется как сумма моментов "точек" этого тела:

Рис. 1

Преобразуем двойное векторное произведение под знаком суммы с помощью известного тождества:

[a ,[b ,c ]] = b (a ,c ) – c (a ,b ).

Эта формула показывает, что направления векторов L иw, вообще говоря, не совпадают, поскольку в самом общем случае сумма представляет собой вектор, направление которого не обязано совпадать с направлением вектора угловой скорости.

Умножим теперь обе части полученного выражения скалярно на вектор w :

Здесь I z – момент инерции тела относительно оси вращения OZ .

Поделив обе части полученного соотношения на 2, придём к искомому результату:

Поскольку Т вращ > 0, то угол между вектором момента импульсаL и вектором угловой скорости w может быть только острым. Полученный результат можно записать несколько по-иному, имея в виду, что :

Здесь L z – проекция момента импульса тела на направление оси вращения OZ . Сократив обе части полученного равенства на w/2, получим:

L z = I z w.

Как видим, момент импульса тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость вращения вокруг этой оси.

Задача 4

Докажите, что кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной оси, связана с проекциями вектора угловой скорости w на главные оси твёрдого тела и моментами инерции относительно главных осей следующим образом:

Решение

Согласно результату предыдущей задачи, кинетическая энергия вращающегося твёрдого тела связана с его моментом импульса:

Если выбрать какие-либо оси координат, связанные с этим телом, то тогда:

Вообще говоря, каждая проекция момента импульса зависит от всех трёх проекций угловой скорости на оси координат. Однако если в качестве системы координат выбрать систему, оси которой являются главными осями тела, то, согласно свойствам этих осей:

Тем самым:

Задача 5

Как зависит скорость изменения кинетической энергии твёрдого тела, т.е. производная dT /dt , от сил, приложенных к этому телу?

Решение

Согласно теореме Кёнига и результату предыдущей задачи, кинетическая энергия твёрдого тела может быть записана в виде:

Здесь I x , I y , I z – моменты инерции твёрдого тела относительно главных осей, а w x , w y ,w z – проекции вектора угловой скорости на эти оси.

Продифференцировав это равенство по времени, получим:

Здесь мы учли, что

Здесь F внеш и М внеш векторная сумма внешних сил и, соответственно, векторная сумма моментов внешних сил, приложенных к телу.

Как видим, изменение кинетической энергии твёрдого тела определяется как внешними силами, так и моментами этих сил. Причём, что интересно, ответ не зависит от того, в каких именно точках тела приложены действующие на тело силы. Всё определяется векторной суммой внешних сил и скоростью движения центра инерции тела, и, соответственно, векторной суммой моментов внешних сил, приложенных к телу и угловой скоростью вращения тела:

Поскольку производная dT /dt равна мощности сил, действующих на тело, то полученный результат представляет мощность внешних сил, приложенных к твёрдому телу.

Момент импульса в классической механике

Связь между импульсом и моментом

Определение

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса :

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.

(В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределенной системы это может быть записано как где - импульс бесконечно малого точечного элемента системы).

Из определения момента импульса следует его аддитивность : как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

  • Замечание: в принципе момент импульса может быть вычислен относительно любого начала отсчета (получившиеся при этом разные значения связаны очевидным образом); однако чаще всего (для удобства и определенности) его вычисляют относительно центра масс или закрепленной точки вращения твердого тела итп).

Вычисление момента

Так как момент импульса определяется векторным произведением , он является псевдовектором , перпендикулярным обоим векторам и . Однако, в случаях вращения вокруг неизменной оси, бывает удобно рассматривать не момент импульса как псевдовектор, а его проекцию на ось вращения как скаляр , знак которого зависит от направления вращения. Если выбрана такая ось, проходящая через начало отсчёта, для вычисления проекции углового момента на неё можно указать ряд рецептов в соответствии с общими правилами нахождения векторного произведения двух векторов.

где - угол между и , определяемый так, чтобы поворот от к производился против часовой стрелки с точки зрения наблюдателя, находящегося на положительной части оси вращения. Направление поворота важно при вычислении, так как определяет знак искомой проекции.

Запишем в виде , где - составляющая радиус-вектора, параллельная вектору импульса, а - аналогично, перпендикулярная ему. является, по сути, расстоянием от оси вращения до вектора , которое обычно называют «плечом». Аналогично можно разделить вектор импульса на две составляющие: параллельную радиус-вектору и перпендикулярную ему . Теперь, используя линейность векторного произведения, а также свойство, согласно которому произведение параллельных векторов равно нулю, можно получить ещё два выражения для .

Сохранение углового момента

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени …энергии
⊠ , , и -симметрии …чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Таким образом, требование замкнутости системы может быть ослаблено до требования равенства нулю главного (суммарного) момента внешних сил:

где - момент одной из сил, приложенных к системе частиц. (Но конечно, если внешние силы вообще отсутствуют, это требование также выполняется).

Математически закон сохранения момента импульса следует из изотропии пространства, то есть из инвариантности пространства по отношению к повороту на произвольный угол. При повороте на произвольный бесконечно малый угол , радиус-вектор частицы с номером изменятся на , а скорости - . Функция Лагранжа системы при таком повороте не изменится, вследствие изотропии пространства. Поэтому

С учетом , где - обобщенный импульс -той частицы, каждое слагаемое в сумме из последнего выражения можно переписать в виде

Теперь, пользуясь свойством смешанного произведения , совершим циклическую перестановку векторов, в результате чего получим, вынося общий множитель:

где, - момент импульса системы. Ввиду произвольности , из равенства следует .

На орбитах момент импульса распределяется между собственным вращением планеты и момента импульса её орбитального движения:

Момент импульса в электродинамике

При описании движения заряженной частицы в электромагнитном поле , канонический импульс не является инвариантным . Как следствие, канонический момент импульса тоже не инвариантен. Тогда берем реальный импульс, который также называется «кинетическим импульсом»:

где - электрический заряд , - скорость света , - векторный потенциал . Таким образом, гамильтониан (инвариантный) заряженной частицы массы в электромагнитном поле:

где - скалярный потенциал . Из этого потенциала следует закон Лоренца. Инвариантный момент импульса или «кинетический момент импульса» определяется:

Момент импульса в квантовой механике

Оператор момента

Вычисление момента импульса в нерелятивистской механике

Если имеется материальная точка массой , двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором , то момент импульса вычисляется по формуле:

где - знак векторного произведения .

Чтобы рассчитать момент импульса тела , его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл :

Можно переписать это через плотность :

Момент импульса в классической механике

Связь между импульсом и моментом

Определение

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса :

где - радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта, - импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где - радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.

(В пределе количество частиц может быть бесконечным, например, в случае твердого тела с непрерывно распределенной массой или вообще распределенной системы это может быть записано как где - импульс бесконечно малого точечного элемента системы).

Из определения момента импульса следует его аддитивность : как, для системы частиц в частности, так и для системы, состоящей из нескольких подсистем, выполняется:

  • Замечание: в принципе момент импульса может быть вычислен относительно любого начала отсчета (получившиеся при этом разные значения связаны очевидным образом); однако чаще всего (для удобства и определенности) его вычисляют относительно центра масс или закрепленной точки вращения твердого тела итп).

Вычисление момента

Так как момент импульса определяется векторным произведением , он является псевдовектором , перпендикулярным обоим векторам и . Однако, в случаях вращения вокруг неизменной оси, бывает удобно рассматривать не момент импульса как псевдовектор, а его проекцию на ось вращения как скаляр , знак которого зависит от направления вращения. Если выбрана такая ось, проходящая через начало отсчёта, для вычисления проекции углового момента на неё можно указать ряд рецептов в соответствии с общими правилами нахождения векторного произведения двух векторов.

где - угол между и , определяемый так, чтобы поворот от к производился против часовой стрелки с точки зрения наблюдателя, находящегося на положительной части оси вращения. Направление поворота важно при вычислении, так как определяет знак искомой проекции.

Запишем в виде , где - составляющая радиус-вектора, параллельная вектору импульса, а - аналогично, перпендикулярная ему. является, по сути, расстоянием от оси вращения до вектора , которое обычно называют «плечом». Аналогично можно разделить вектор импульса на две составляющие: параллельную радиус-вектору и перпендикулярную ему . Теперь, используя линейность векторного произведения, а также свойство, согласно которому произведение параллельных векторов равно нулю, можно получить ещё два выражения для .

Сохранение углового момента

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
↕ Трансляции времени …энергии
⊠ , , и -симметрии …чётности
↔ Трансляции пространства Однородность
пространства
…импульса
↺ Вращения пространства Изотропность
пространства
…момента
импульса
⇆ Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Таким образом, требование замкнутости системы может быть ослаблено до требования равенства нулю главного (суммарного) момента внешних сил:

где - момент одной из сил, приложенных к системе частиц. (Но конечно, если внешние силы вообще отсутствуют, это требование также выполняется).

Математически закон сохранения момента импульса следует из изотропии пространства, то есть из инвариантности пространства по отношению к повороту на произвольный угол. При повороте на произвольный бесконечно малый угол , радиус-вектор частицы с номером изменятся на , а скорости - . Функция Лагранжа системы при таком повороте не изменится, вследствие изотропии пространства. Поэтому

С учетом , где - обобщенный импульс -той частицы, каждое слагаемое в сумме из последнего выражения можно переписать в виде

Теперь, пользуясь свойством смешанного произведения , совершим циклическую перестановку векторов, в результате чего получим, вынося общий множитель:

где, - момент импульса системы. Ввиду произвольности , из равенства следует .

На орбитах момент импульса распределяется между собственным вращением планеты и момента импульса её орбитального движения:

Момент импульса в электродинамике

При описании движения заряженной частицы в электромагнитном поле , канонический импульс не является инвариантным . Как следствие, канонический момент импульса тоже не инвариантен. Тогда берем реальный импульс, который также называется «кинетическим импульсом»:

где - электрический заряд , - скорость света , - векторный потенциал . Таким образом, гамильтониан (инвариантный) заряженной частицы массы в электромагнитном поле:

где - скалярный потенциал . Из этого потенциала следует закон Лоренца. Инвариантный момент импульса или «кинетический момент импульса» определяется:

Момент импульса в квантовой механике

Оператор момента

Вычисление момента импульса в нерелятивистской механике

Если имеется материальная точка массой , двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором , то момент импульса вычисляется по формуле:

где - знак векторного произведения .

Чтобы рассчитать момент импульса тела , его надо разбить на бесконечно малые кусочки и векторно просуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл :

Можно переписать это через плотность :

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где - радиус-вектор, проведенный из точки O, - импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z .

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) :
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

Векторное произведение радиуса-вектора материальной точки на ее импульс: называют моментом импульса , этой точки относительно точки О (рис.5.4)

Вектор иногда называют также моментом количества движения материальной точки. Он направлен вдоль оси вращения перпендикулярно плоскости, проведенной через векторы и и образует с ними правую тройку векторов (при наблюдении из вершины вектора видно, что вращение по кратчайшему расстоянию от к происходит против часовой стрелки).

Векторную сумму моментов импульсов всех материальных точек системы называют моментом импульса (количества движения) системы относительно точки О:

Векторы и взаимно перпендикулярны и лежат в плоскости перпендикулярной оси вращения тела. Поэтому . Сучетом связи линейных и угловых величин

и направлен вдоль оси вращения тела в ту же сторону, что и вектор .

Таким образом.

Момент импульса тела относительно оси вращения

(5.9)

Следовательно, момент импульса тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость вращения тела вокруг этой оси.

Вопрос №16

Три основных закона движения тел:

1-й закон. Всякое тело сохраняет свое состояние покоя или равномерного и

прямолинейного движения, пока и поскольку приложенные силы не заставят его

изменить это состояние. Этот закон называется законом инерции. Если m - масса

тела, а v - его скорость, то закон инерции математически можно представить в

следующем виде:

Если v = 0, то тело находится в покое; если v = const, то тело движется

равномерно и прямолинейно. Произведение mv называется количеством движения тела.

Изменение количества движения тела может произойти только в результате его

взаимодействия с другими телами, т.е. под действием силы.

2-й закон. Изменение количества движения пропорционально приложенной движущей

силе и происходит по направлению той прямой, по которой эта сила действует.

Второй закон математически записывается так: F = mа

т. е. произведение массы тела m на его ускорение а равно действующей силе F.

Уравнение (2.14) называется основным законом динамики материальной точки.

3-й закон. Действие всегда вызывает равное и противоположное противодействие.

Иными словами, воздействия двух тел друг на друга всегда равны и направлены в

противоположные стороны.

Если какое-нибудь тело с массой т1 взаимодействует с другим телом с массой m2 ,

то первое тело изменяет количество движения второго тела m2v2 , no и само

претерпевает от него такое же изменение своего количества движения m1v1 , но

только обратно направленное, т.е.

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Вопрос №17

теорема изменения импульса-изменение количества движения системы за некоторый промежу­ток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.

Теорема движения центра масс

система состоит из n точек, с соответствующими массами .

Запишем для каждой точки основной закон динамики

Эта система дифференциальных уравнений движения системы, так как для любой точки k системы

Проектируя уравнения (16.1.1) на координатные оси получим Зn уравнений, которые в общем случае проинтегрировать затруднительно,

Поэтому обычно применяют общие теоремы динамики для которых уравнения (16.1.1) являются исходными.

Теорема об изменении кинетической энергии системы : в дифференциальной форме: dT = , , – элементарные работы, действующих на точку внешних и внутренних сил, в конечной форме:

Т 2 – Т 1 = . Для неизменяемой системы и Т 2 – Т 1 = , т.е. изменение кинетической энергии твердого тела на некотором перемещении равно сумме работ внешних сил, действующих на тело на этом перемещении. Если сумма работ реакций связей на любом возможном перемещении системы равна нулю, то такие связи называются идеальными. Коэффициент полезного действия (кпд): < 1, А пол.сопр. – работа полезных сил сопротивления (сил, для которых предназначена машина), А затр = А пол.сопр. + А вр.сопр. – затраченная работа, А вр.сопр. -– работа вредных сил сопротивления (силы трения, сопротивления воздуха и т.п.).

h= N маш /N дв, N маш – полезная мощность машины, N дв – мощность дв-ля, приводящего ее в движение.

Вопрос №18

Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже бо́льших), преобразования Галилея приближенно верны с очень большой точностью.

Если ИСО(инерциальная система отсчета) S движется относительно ИСО S" с постоянной скоростью вдоль оси , а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Галилея имеют вид:

или, используя векторные обозначения,

(последняя формула остается верной для любого направления осей координат).

§ Как видим, это просто формулы для сдвига начала координат, линейно зависящего от времени (подразумеваемого одинаковым для всех систем отсчета).

Из этих преобразований следуют соотношения между скоростями движения точки и её ускорениями в обеих системах отсчета:

§ Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для малых скоростей (много меньше скорости света).

мировой эфир

Более ста лет назад появилась гипотеза абсолютно неподвижного пространства - мирового эфира. Эфир определялся как некая однородная среда, целиком заполняющая всю вещество и вакуум. За это его назвали "мировым эфиром". Что из себя представляет данная субстанция и каковы его свойства - загадка, но было известно, что свет движется в эфире точно так же, как звук в воздухе. То есть в виде волны. Свет рассматривался как колебание мирового эфира. Было так же декларировано, что вещество движется сквозь эфир не вызывая его возмущения, точно так же, как тонкая сетка с большими ячейками движется внутри воды. Таким образом вещество и эфир строго разграничивались.

Майкельсона опыт

Майкельсонаопыт, опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории.

В физике конца 19 века предполагалось, что свет распространяется в некоторой универсальной мировой среде -эфире. При этом ряд явлений (аберрация света, Физо опыт) приводил к заключению, что эфир неподвижен или частично увлекается телами при их движении. Согласно гипотезе неподвижного эфира, можно наблюдать "эфирный ветер" при движении Земли сквозь эфир и скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления её движения в эфире.

М. о. проводился с помощью интерферометра Майкельсона с равными плечами; одно плечо направлялось по движению Земли, другое - перпендикулярно к нему. При повороте всего прибора на 90° разность хода лучей должна менять знак, вследствие чего должна смещаться интерференционная картина. Расчёт показывает, что такое смещение, выраженное в долях ширины интерференционной полосы, равно D = (2l/ l)(v 2 / c 2), где l - длина плеча интерферометра, l - длина волны применявшегося света (жёлтая линия Na), с - скорость света в эфире, v - орбитальная скорость Земли. Так как величина v/c для орбитального движения Земли порядка 10 -4 , то ожидавшееся смещение очень мало и в первом М. о. составляло всего 0,04. Тем не менее уже на основе этого опыта Майкельсон пришёл к убеждению о неверности гипотезы неподвижного эфира.

В дальнейшем М. о. неоднократно повторялся. В опытах Майкельсона и Э. У. Морли (1885-87) интерферометр устанавливался на массивной плите, плавающей в ртути (для плавного вращения). Оптическая длина пути с помощью многократных отражений от зеркал была доведена до 11 м. При этом ожидавшееся смещение D " 0,4. Измерения подтвердили отрицательный результат М. о. В 1958 в Колумбийском университете (США) было ещё раз продемонстрировано отсутствие неподвижного эфира. Пучки излучения двух одинаковых квантовых генераторов микроволн (мазеров) направлялись в противоположные стороны - по движению Земли и против движения - и сравнивались их частоты. С огромной точностью (~10 -9 %) было установлено, что частоты остаются одинаковыми, в то время как "эфирный ветер" привёл бы к появлению различия этих частот на величину, почти в 500 раз превосходящую точность измерений.

В классической физике отрицательный результат М. о. не мог быть понят и согласован с другими явлениямиэлектродинамики движущихся сред. В теории относительности постоянство скорости света для всехинерциальных систем отсчёта принимается как постулат, подтверждаемый большой совокупностью экспериментов.

Постулаты теории относительности

1)Все законы природы одинаковы в инерциальных системах отсчета

2)Скорость света в вакууме одинакова во всех инерциальных системах отсчетав

Лоренца преобразования , в специальной теории относительности - преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта к другой. Получены в 1904 Х. А. Лоренцом как преобразования, по отношению к которым уравнения классической микроскопической электродинамики (Лоренца - Максвелла уравнения) сохраняют свой вид. В 1905 А. Эйнштейн вывел их, исходя из двух постулатов, составивших основу специальной теории относительности: равноправия всех инерциальных систем отсчёта и независимости скорости распространения света в вакууме от движения источника света.

Рассмотрим частный случай двух инерциальных систем отсчёта å и å’ с осями х и x’, лежащими на одной прямой, и соответственно параллельными другими осями (у и y’, z и z’). Если система å’ движется относительно å с постоянной скоростью u в направлении оси х, то Л. п. при переходе от å к å’ имеют вид:

,

где с - скорость света в вакууме (штрихованные координаты относятся к системе å’, нештрихованные - к å).

Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения, малых по сравнению со скоростью света (u<<c ), Л. п. переходят в преобразования Галилея (см. Галилея принцип относительности), справедливые в классической механике Ньютона


Похожая информация.


При решении задач на движение тел в пространстве часто используют формулы сохранения кинетической энергии и импульса. Оказывается, что аналогичные выражения существуют и для вращающихся тел. В данной статье подробно рассматривается закон сохранения момента импульса (формулы соответствующие также приводятся) и дается пример решения задачи.

Процесс вращения и момент импульса

Перед тем как перейти к рассмотрению формулы закона сохранения момента импульса, необходимо познакомиться с этим физическим понятием. Проще всего его можно ввести, если воспользоваться рисунком ниже.

На рисунке видно, что на конце вектора r¯, направленного от оси вращения и перпендикулярного ей, имеется некоторая материальная точка массой m. Эта точка движется по окружности названного радиуса с линейной скоростью v¯. Из физики известно, что произведение массы на линейную скорость называется импульсом (p¯). Теперь стоит ввести новую величину:

L¯ = r¯*m*v¯ = r¯*p¯.

Здесь векторная величина L¯ представляет собой момент импульса. Чтобы перейти к скалярной форме записи, необходимо знать модули соответствующих значений r¯ и p¯, а также угол θ между ними. Скалярная формула для L имеет вид:

L = r*m*v*sin(θ) = r*p*sin(θ).

На рисунке выше угол θ является прямым, поэтому можно просто записать:

L = r*m*v = r*p.

Из записанных выражений следует, что единицей измерения для L будут кг*м 2 /с.

Направление вектора момента импульса

Поскольку рассматриваемая величина является вектором (результат векторного произведения), то она будет иметь определенное направление. Из свойств произведения двух векторов следует, что их результат даст третий вектор, перпендикулярный плоскости, образованной первыми двумя. При этом направлен он будет таким образом, что если смотреть с его конца, то тело будет вращаться против часовой стрелки.

Результат применения этого правила показан на рисунке в предыдущем пункте. Из него видно, что L¯ направлен вверх, поскольку, если смотреть на тело сверху, его движение будет происходить против хода стрелки часов. При решении задач важно учитывать направление во время перехода к скалярной форме записи. Так, рассмотренный момент импульса считается положительным. Если бы тело вращалось по часовой стрелке, тогда в скалярной формуле перед L следовало бы поставить знак минуса (-L).

Аналогия с линейным импульсом

Рассматривая тему момента импульса и закона его сохранения, можно проделать один математический трюк - преобразовать выражение для L¯, помножив и поделив его на r 2. Тогда получится:

L¯ = r*m*v¯*r 2 /r 2 = m*r 2 *v¯/r.

В этом выражении отношение скорости к радиусу вращения называется угловой скоростью. Она обычно обозначается буквой греческого алфавита ω. Эта величина показывает, на сколько градусов (радиан) сделает поворот тело по орбите своего вращения за единицу времени. В свою очередь, произведение массы на квадрат радиуса - это тоже физическая величина, имеющая собственное название. Обозначают ее I и называют моментом инерции.

В итоге формула для момента импульса преобразуется в следующую форму записи:

L¯ = I *ω¯, где ω¯= v¯/r и I=m*r 2 .

Выражение демонстрирует, что направление момента импульса L¯ и угловой скорости ω¯ совпадают для системы, состоящей из вращающейся материальной точки. Особый интерес представляет величина I. Ниже она рассмотрена подробнее.

Момент инерции тела

Введенная величина I характеризует "сопротивляемость" тела любому изменению скорости его вращения. То есть она играет точно такую же роль, что и инерция тела при линейном перемещении объекта. По сути I для кругового движения с физической точки зрения означает то же самое, что и масса при линейном движении.

Как было показано, для материальной точки с массой m, вращающейся вокруг оси на расстоянии от нее r, момент инерции рассчитать просто (I = m*r 2), однако для любых других тел этот расчет будет несколько сложным, поскольку предполагает использование интеграла.

Для тела произвольной формы I можно определить при помощи следующего выражения:

I = ∫ m (r 2 *dm) = ∫ V (r 2 *ρ*dV), где ρ - плотность материала.

Выражения выше означают, что для вычисления момента инерции следует разбить все тело на бесконечно малые объемы dV, умножить их на квадрат расстояния до оси вращения и на плотность и просуммировать.

Для тел разной формы эта задача решена. Ниже приводятся данные для некоторых из них.

Материальная точка: I = m*r 2 .

Диск или цилиндр: I = 1/2*m*r 2 .

Стержень длиной l, закрепленный по центру: I = 1/12*m*l 2 .

Шар: I = 2/5*m*r 2 .

Момент инерции зависит от распределенной массы тела относительно оси вращения: чем дальше от оси будет находиться большая часть массы, тем больше будет I для системы.

Изменение момента импульса во времени

Рассматривая момент импульса и закон сохранения момента импульса в физике, можно решить простую проблему: определить, как и за счет чего он будет изменяться во времени. Для этого следует взять производную по dt:

dL¯/dt = d(r¯*m*v¯)/dt = m*v¯*dr¯/dt+r*m*dv¯/dt.

Первое слагаемое здесь равно нулю, поскольку dr¯/dt = v¯ и произведение векторов v¯*v¯ = 0 (sin(0) = 0). Второе же слагаемое может быть переписано следующим образом:

dL¯/dt =r*m*a¯, где ускорение a = dv¯/dt, откуда:

dL¯/dt =r*F¯=M¯.

Величина M¯, согласно определению, называется моментом силы. Она характеризует действие силы F¯ на материальную точку массой m, расположенную на расстоянии r от оси вращения.

Что показывает полученное выражение? Оно демонстрирует, что изменение момента импульса L¯ возможно только за счет действия момента силы M¯. Эта формула - закон сохранения момента импульса точки: если M¯=0, то dL¯/dt = 0 и L¯ является постоянной величиной.

Какие моменты сил могут изменить L¯ системы?

Существует два вида моментов сил M¯: внешние и внутренние. Первые связаны с силовым воздействием на элементы системы со стороны любых внешних сил, вторые же возникают за счет взаимодействия частей системы.

Согласно третьему закону Ньютона, любой силе действия соответствует направленная противоположно сила противодействия. Это означает, что суммарный любых взаимодействий внутри системы всегда равен нулю, то есть он не может повлиять на изменения момента импульса.

Величина L¯ может измениться только за счет внешних моментов сил.

Формула закона сохранения момента импульса

Формула для записи выражения сохранения величины L¯ в случае, если сумма внешних моментов сил равна нулю, имеет следующий вид:

I 1 *ω 1 = I 2 *ω 2 .

Любые изменения момента инерции системы пропорционально отражаются на изменении угловой скорости таким образом, что произведение I*ω не меняет своего значения.

Вид этого выражения аналогичен закону сохранения линейного импульса (роль массы играет I, а роль скорости - ω). Если развивать аналогию дальше, то, помимо этого выражения, можно записать еще одно, которое будет отражать сохранение кинетической энергии вращения:

E = I *(ω) 2 /2 = const.

Применение закона сохранения момента импульса находит себя в целом ряде процессов и явлений, которые кратко охарактеризованы ниже.

Примеры использования закона сохранения величины L¯

Следующие примеры закона сохранения момента импульса имеют важное значение для соответствующих сфер деятельности.

  • Любой вид спорта, где необходимо совершать прыжки с вращением. Например, балерина или спортсмен по фигурному катанию начинает исполнение пируэта с вращением, разведя широко руки и отодвинув ногу от центра тяжести своего тела. Затем он прижимает ногу ближе к опорной и руки ближе к телу, уменьшая тем самым момент инерции (большая часть точек тела расположена близко к оси вращения). По закону сохранения величины L, должна увеличиться его угловая скорость вращения ω.

  • Для изменения направления ориентации относительно Земли какого-либо искусственного спутника. Выполняется это так: спутник имеет специальный тяжелый "маховик", его приводит в движение электромотор. Общий момент импульса должен сохраняться, поэтому сам спутник начинает вращаться в противоположную сторону. Когда он примет нужную ориентацию в пространстве, маховик останавливают, и спутник также перестает вращаться.
  • Эволюция звезд. По мере того как звезда сжигает свое водородное топливо, силы гравитации начинают преобладать над давлением ее плазмы. Этот факт приводит к уменьшению радиуса звезды до небольших размеров и, как следствие, к сильному увеличению скорости вращения угловой. Например, установлено, что нейтронные звезды, имеющие диаметр несколько километров, вращаются с гигантскими скоростями, делая один оборот за доли миллисекунды.

Решение задачи на закон сохранения L¯

Учеными установлено, что через несколько миллиардов лет Солнце, исчерпав энергетические запасы, превратится в "белого карлика". Необходимо рассчитать, с какой скоростью оно будет вращаться вокруг оси.

Для начала необходимо выписать значения необходимых величин, которые можно взять из литературы. Итак, сейчас данная звезда имеет радиус 696 000 км и один оборот вокруг своей оси делает за 25,4 земных суток (значение для области экватора). Когда она подойдет к концу своего эволюционного пути, то сожмется до размеров 7000 км (порядка радиуса Земли).

Полагая, что Солнце - идеальный шар, можно воспользоваться формулой закона сохранения момента импульса для решения этой задачи. Нужно перевести сутки в секунды и километры в метры, получается:

L = I*ω = 2/5*m*r 1 2 *ω 1 = 2/5*m*r 2 2 *ω 2 .

Откуда следует:

ω 2 = (r 1 /r 2) 2 *ω 1 = (696000000/7000000) 2 *2*3,1416/(25,4*24*3600)= 0,0283 рад/с.

Здесь использовалась формула для угловой скорости (ω = 2*pi/T, где T - период вращения в секундах). При выполнении вычислений также было сделано предположение, что масса Солнца остается постоянной (это не верно, поскольку она будет уменьшаться. Тем не менее полученное значение ω 2 является нижней границей, то есть в действительности Солнце-карлик будет вращаться еще быстрее).

Поскольку полный оборот - это 2*pi радиан, тогда получится:

T 2 = 2*pi/ω 2 = 222 с.

То есть в конце своего жизненного цикла данная звезда будет делать один оборот вокруг своей оси быстрее, чем за 222 секунды.