Лампы без стартера. О системах питания ламп дневного света

Предлагаем два варианта подключения люминисцентных ламп, без использования дросселя.

Вариант 1.

Все люминесцентные светильники, работающие от сети переменного тока (кроме светильников с высокочастотными преобразователями), излучают пульсирующий (с частотой 100 пульсаций в секунду) световой поток. Это действует утомляюще на зрение людей, искажает восприятие вращающихся узлов в механизмах.
Предлагаемый светильник собран по общеизвестной схеме электропитания люминесцентной лампы выпрямленным током, отличающейся введением в нее конденсатора большой емкости марки К50-7 для сглаживания пульсаций.

При нажатии на общую клавишу (см. схему 1) срабатывает кнопочный выключатель 5В1, подсоединяющий светильник к электросети, и кнопка 5В2, замыкающая своими контактами цепь накала люминесцентной лампы ЛД40. При отпускании клавиш выключатель 5В1 остается включенным, а кнопка SВ2 размыкает свои контакты, и от возникающей ЭДС самоиндукции лампа зажигается. При вторичном нажатии на клавишу выключатель SВ1 размыкает свои контакты, и светильник гаснет.

Описание включающего устройства не привожу из-за его простоты. Для равномерного износа нитей накала лампы полярность ее включения следует менять примерно через 6000 часов работы.Световой поток, излучаемый светильником, практически не имеет пульсаций.

Схема 1. Подключения люминисцентной лампы с перегоревшей нитью (вариант 1.)

В таком светильнике можно применять даже лампы с одной перегоревшей нитью. Для этого ее выводы замыкают на цоколе пружинкой из тонкой стальной струны, и лампа вставляется в светильник так, чтобы на замкнутые ножки поступал «плюс» выпрямленного напряжения (верхняя нить на схеме).
Вместо конденсатора марки КСО-12 на 10000 пф, 1000 В может быть использован конденсатор из вышедшего из строя стартера для ЛДС.

Вариант 2.

Основная причина выхода из строя люминесцентных ламп та же, что и ламп накаливания — перегорание нити накала. Для стандартного светильника люминесцентная лампа с такого рода неисправностью, конечно же, непригодна, и ее приходится выбрасывать. Между тем по другим параметрам ресурс лампы с перегоревшей нитью накала часто остается далеко не выработанным.
Одним из способов «реанимации» люминесцентных ламп является применение холодного (мгновенного) зажигания. Для этого хотя бы один из катодов должен об-
ладать эмиссионной активностью (см. схему, реализующую указанный способ).

Устройство представляет собой диодно-конденсаторный умножитель с кратностью 4(см.схему 2). Нагрузкой служит цепь из последовательно соединенных газоразрядной лампы и лампы накаливания. Их мощности одинаковы (40 Вт), номинальные напряжения питания также близки по величине (соответственно 103 и 127 В). Вначале при подаче переменного напряжения сети 220 В устройство работает как умножитель. В результате к лампе оказывается приложенным высокое напряжение, которое и обеспечивает «холодное» зажигание.

Схема 2. Еще один вариант подключения люминисцентной лампы с перегоревшей нитью.

После возникновения устойчивого тлеющего разряда устройство переходит в режим двухполупериодного выпрямителя, нагруженного активным сопротивлением. Эффективное напряжение на выходе мостовой схемы практически равно сетевому. Оно распределяется между лампами Е1.1 и Е1.2. Лампа накаливания выполняет функцию токоограничивающего резистора (балласта) и вместе с тем она используется как осветительная, что повышает КПД установки.

Заметим, что люминесцентная лампа представляет фактически своего рода мощный стабилитрон, так что изменения величины питающего напряжения сказываются главным образом на свечении (яркости) лампы накаливания. Поэтому, когда напряжение сети отличается повышенной нестабильностью, лампу Е1_2 нужно взять мощностью 100 Вт на напряжение 220 В.
Совместное применение двух разнотипных источников света, взаимодополняющих друг друга, приводит к улучшению светотехнических характеристик: уменьшаются пульсации светового потока, спектральный состав излучения ближе к естественному.

Устройство не исключает возможности использования в качестве балласта и типового дросселя. Его включают последовательно на входе диодного моста, например, в разрыв цепи вместо предохранителя. При замене диодов Д226 на более мощные — серии КД202 или блоки КД205 и КЦ402 (КЦ405) умножитель позволяет питать люминесцентные лампы мощностью 65 и 80 Вт.

Правильно собранное устройство не требует наладки. В случае нечеткого зажигания тлеющего разряда либо при отсутствии такового вообще при номинальном сетевом напряжении следует изменить полярность подсоединения люминесцентной лампы. Предварительно необходимо произвести отбор перегоревших ламп для выявления возможности работать в данном светильнике.

С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.

Хорошая освещенность и линейные размеры — преимущества дневного света

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА. Часто это устройство называют просто дросселем.

Один из ЭмПРА

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Свечением люминесцентных ламп, имеющих отношение к газоразрядным, является УФ-излучение, возникающее в результате воздействия электрического разряда на пары ртути в колбе.

Это излучение является невидимым для человеческого глаза; видимым его делает слой люминофора, нанесенный на внутренней поверхности колбы.

Для создания электрического разряда в лампе дневного света, имеющей довольно высокое сопротивление, соответственно требуется импульс высокого напряжения, после которого в цепь питания, во избежание ее перегорания необходимо включить сопротивление для ограничения тока.

Для реализации данной задачи используется специальная пускорегулирующая аппаратура (ПРА) или так называемый балласт.

В настоящее время существует два вида ПРА: ЭПРА - электронный балласт и ЭМПРА - электромагнитный. Каждый из них, разумеется имеет свои преимущества и недостатки в использовании. В этой статье приведено подробное описание и схемы подключения ламп дневного света с использованием ЭМПРА.

Схемы подключения ламп дневного света

Помимо самой люминесцентной лампы (L) схема содержит выключатель , дроссель (Dr) и стартер (St). Дроссель - устройство, обеспечивающее импульс высокого напряжения для зажигания и ограничения ее тока (потери мощности - собственно, это балласт), во избежание перегорания спиралей.


Стартер конструктивно представляет собой газоразрядную лампочку с одним или двумя подвижными контактами, колба которого содержит инертный газ, чаще всего неон. Рабочее напряжение стартера всегда ниже сетевого, но превышать напряжения свечения лампы дневного света.

Описание работы схемы . При подаче напряжения на спирали лампы через последовательно включенный с ней дроссель, оно поступает на контакты параллельно включенного стартера. В результате возникновения тлеющего разряда между электродами происходит замыкание последних вследствие их изгибания.

Замыканием контактов стартера, как видно из схемы увеличивается напряжение на контактах лампы, обеспечивая прогрев ее паров ртути и спиралей. По аналогии происходит и их размыкание: остывание контактов приводит к разгибанию.

Это размыкание вызывает возникновение броска высокого напряжения дросселя - импульса, достаточного для зажигания лампы. Таким образом, происходит включение, а напряжение, приложенное к стартеру будет недостаточным для возникновения в нем разряда и замыкания электродов.

Пунктиром выделено подключение конденсатора C. Он не является обязательным элементом схем и предназначен для снижения уровня радиопомех, вызываемых замыканием контактов стартера в момент включения.

Люминесцентный светильник

Лампы дневного света (сокращенно ЛДС) заняли достойную нишу на рынке электроосветительных приборов благодаря своей экономичности и высоким эксплуатационным характеристикам.

Появились различные модификации ЛДС, позволяющие усовершенствовать устройства запуска ламп (ЭПРА), минимизировать размеры светильников, сделать компактные люминесцентные лампы (КЛС), совместив колбу и электрическую плату в одном корпусе.

Данные осветительные электроприборы существенно дороже обычных лампочек накаливания, поэтому, при выходе из строя люминесцентных светильников, стоит задуматься об их ремонте и восстановлении.

Подробно принцип работы люминесцентных источников света, их подключение и замена описаны в предыдущей , а узнать о видах, достоинствах и преимуществах люминесцентных энергосберегающих ламп можно, перейдя по данной . Здесь будут описаны основные неполадки люминесцентных светильников, методы продления срока службы ЛДС и возможности ремонта пускорегулирующих аппаратов (ПРА).

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника – сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА ) в виде дросселя и стартера, и электронным (ЭПРА ), в котором физические условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.


Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старение, износ и перегорание самой лампы. Правильное определение причин позволит осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных лампочек накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, скорый износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска. Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.


Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение – данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы – ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА. Замена лампы на новую позволит точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во первых, ее нужно утилизировать, согласно государственным законам, так как внутри колбы имеются вредные пары ртути.

Во вторых, даже если перегорели нити накаливания, можно продлить строк эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даже исправный люминесцентный светильник моргает при запуске из-за череды неблагоприятных стартовых обстоятельств – разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен – пускорегулирующий аппарат поддерживает ток в газе на одном уровне.


Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Ремонт люминесцентных светильников

Алгоритм ремонта мигающего светильника дневного света происходит по этапам:

  • Проверяется напряжение сети и качество контактов подключения;
  • Производится замена лампы на исправную;
  • Если светильник и дальше моргает:
    • в светильниках с ЭмПРА нужно поменять стартер и проверить дроссель (балласт);
    • в источниках дневного света с ЭПРА необходим ремонт или замена электронного балласта;

Замена лампы как самый простой способ диагностики светильника

Проверка и ремонт пускорегулирующих аппаратов, как и продление срока службы изношенной лампы, требует радиотехнических познаний и соответствующих инструментов, таких как мультиметр, паяльник, набор отверток и т д.

Электромагнитный балласт

Поскольку люминесцентный светильник с ЭмПРА достаточно прост, после замены лампы и стартера, алгоритм ремонта заключается в следующих этапах:


Электронный балласт

У разных производителей ЭПРА электронные схемы различаются, но, в общем, их принцип действия одинаков – нити накала люминесцентных ламп обладают некой индуктивностью, что позволяет включить их в автоколебательный контур, состоящий из конденсаторов и катушек. Данный контур имеет обратную связь с инвертором, собранным на мощных транзисторных ключах.


Типичная схема электронного пускорегулирующего аппарата для двух люминесцентных ламп

При нагреве нитей их сопротивление увеличивается, изменяются характеристики колебаний, на что реагирует инвертор, выдавая напряжение розжига лампы. Ток через ионизированный газ шунтирует напряжение на нитях, уменьшая их накал. Обратная связь инвертора с автоколебательным контуром позволяет регулировать силу тока в лампе.

Для питания инвертора применяется диодный выпрямитель с системой фильтрации и сглаживания помех. Высокочастотный инвертор является одной из причин большой популярности ЭПРА – подключенная лампа не моргает с удвоенной частотой сети 100 Гц, и не гудит при работе, как это происходит при применении ЭмПРА.

Ремонт электронного балласта

Большинство радиолюбителей не задаются целью понять предназначение и функцию каждого элемента схемы, тем более, если нет возможности проверить характеристики в работе. Поэтому будет намного полезней описать последовательность действий при ремонте.

Для диагностики ЭПРА в ремонтных мастерских используется осциллограф, генераторы частоты и другое измерительное оборудование. В домашних условиях возможности поиска неисправных компонентов сводится к визуальному осмотру электронной платы и последовательному поиску перегоревшей детали при помощи имеющихся измерительных инструментов.


Поиск неисправности на плате электронного балласта

Первым делом следует проверить предохранитель, если он присутствует в схеме. Выход из строя предохранителя может оказаться единственной проблемой, возникшей из-за перенапряжения в сети. Но чаще перегоревший предохранитель, как правило, указывает на более сложные неисправности пускорегулирующего аппарата лампы дневного света.

Как показывает практика, в электронном балласте могут выйти из строя любые компоненты – конденсаторы, резисторы, транзисторы, диоды, дроссели и трансформаторы. Визуально определить неисправность можно по характерному почернению деталей, изменению цвета платы или вспучиванию конденсаторов, как показано на видео:


Для проверки деталей мультиметром (особенно транзисторов и диодов) их лучше выпаять из платы – сопротивление других элементов схемы может давать ложные показания измерений. Не выпаивая детали, их можно гарантированно проверить только на пробой. При проверке деталей может возникнуть проблема с их идентификацией, поэтому, будет полезно для ремонта сначала скачать схему устройства.

Выявленный дефектный элемент подлежит замене. Паять полупроводниковые приборы – диоды и транзисторы следует с особой осторожностью – они чувствительны к перегреву. Следует помнить, что запускать электронный балласт без нагрузки нельзя, то есть, нужно подключить к нему лампу дневного света соответствующей мощности.

Самодельный ЭПРА

Многие радиолюбители переходят с ЭмПРА, изготовляя самодельный электронный балласт для люминесцентных источников дневного света. Схема электронного балласта с измеренными в контрольных точках осциллограммами приведена на рисунке:


Схема электронного балласта

На рисунке ниже показана осциллограмма в момент запуска (розжига) лампы дневного света, а также приводится чертеж печатной платы и внешний вид электронного пускорегулирующего аппарата.


Печатная плата балласта, его внешний вид и осциллограмма в момент запуска лампы

На видео ниже мастер, изготовивший данный электронный балласт, указывает на основные особенности собственноручного изготовления данного устройства:

Продление срока службы лампы дневного света

Уже во время начала массовой эксплуатации люминесцентных светильников радиолюбители научились продлевать срок их службы и заставляли зажигаться лампы дневного света, у которых перегорели нити накаливания. Зажигание обеспечивалось путем увеличения напряжения , приложенного к электродам лампы.

Увеличение напряжения производится по схеме с двухполупериодным умножителем на диодах и конденсаторах. Таким образом на электродах лампы в момент запуска достигается пик напряжения свыше 1000 В, что является достаточным для холодной ионизации паров ртути и возникновения разряда в газе колбы. Поэтому возможен розжиг и стабильная работа лампы даже с перегоревшими спиралями.


Номиналы компонентов устройства запуска ламп указаны в таблице ниже

Основным недостатком данной схемы запуска ламп дневного света является большое номинальное напряжение конденсаторов – не менее 600 В , что делает устройство весьма громоздким. Другим недостатком является постоянный ток, из-за чего пары ртути будут накапливаться возле анода, поэтому лампу нужно будет периодически переключать, вынимая из держателей и оборачивая.

Резистор выполняет функцию ограничения тока, иначе лампа может взорваться. Резистор можно намотать своими руками, используя проволоку из нихрома, но, такие же результаты дает правильно подобранная лампа накаливания, в которой рассеиваемая тепловая энергия не пропадет даром, а будет выделяться в виде дополнительного свечения лампочки.

В большинстве случаев радиолюбители используют вместо резистора лампы накаливания на 127 В, мощностью 25-150 Вт, комбинируя их в случае надобности. Мощность лампы, подключаемой вместо резистора, должна в несколько раз превышать мощность подключаемого люминесцентного светильника. Номиналы других элементов, рассчитанные исходя из мощности лампы дневного света, указаны в таблице.


Номиналы компонентов устройства запуска перегоревших люминесцентных ламп

В данной таблице требуемое сопротивление и мощность рассеивающей лампы достигается путем параллельного подключения нескольких лампочек на 127 В. Диоды могут быть заменены на импортные, с аналогичными характеристиками. Конденсаторы должны выдерживать напряжение не менее 600 В.

Одна из приведенных схем позволяет запитать ЛДС без использования дорогого и громоздкого дросселя, роль которого выполняет обычная лампа накаливания, другая конструкция поможет поджечь лампу без помощи стартера.

В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС.

Сама ЛДС подключена к сети через выпрямитель, собранный по классической схеме удвоения напряжения (VD1, VD2, С1, С2). В момент включения, пока разряда внутри лампы дневного света нет, на нее подается удвоенное напряжение сети, которое поджигает лампу без предварительного подогрева катодов. После запуска ЛДС в работу включается токоограничивающая лампа HL1, на HL2 устанавливается рабочее напряжение и рабочий ток. В таком режиме лампа накаливания едва светится. Для надежного запуска светильника необходимо фазный вывод сети подключить как показано на схеме – к токоограничивающей лампе HL1.

Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт (при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе).

Рассмотрим работу схемы. Питающее напряжение подается через стандартный дроссель L1 на выпрямитель VD3, роль которого выполняет диодная сборка КЦ405А и далее на лампу EL1. Пока лампа погашена, напряжения на удвоителе VD1, VD2, С2, С3 достаточно для открывания стабилитронов, поэтому на электродах лампы присутствует удвоенное напряжение сети. Как только лампа запустится, напряжение на ней упадет и станет недостаточным для работы удвоителя. Стабилитроны закрываются и на электродах лампы устанавливается рабочее напряжение, ограниченное по току дросселем L1. Конденсатор С1 необходим для компенсации реактивной мощности, R1 снимает остаточное напряжение на схеме при ее отключении, что обеспечит безопасную замену лампы.

Следующая схема полключения лампы устраняет ее мерцание с частотой сети, которое снановится очень заметным при старении лампы. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост.

И еще одна схема, в которой не используется ни дроссель, ни стартер: В качестве балластного сопротивления в схеме применяется лампа накаливания (для ЛДС 80 Вт ее мощность нужно увеличить до 200-250 Вт). Конденсаторы работают в режиме умножителя и поджигают лампу без предварительного разогрева электродов. Используя питание ЛДС постоянным током, не следует забывать, что при таком включении из-за постоянного перемещения ионов ртути к катоду, происходит затемнение одного конца лампы (со стороны анода). Явление это носит название катафореза и частично бороться с ним можно регулярным (раз в 1-2 месяца) переключением полярности питания ЛДС.