Схема стабилизатора напряжения. Мощные стабилизаторы напряжения с защитой по току

На рис.1 изображена схема стабилизатора, от которой можно питать не только автомобильный магнитофон, но и любую радиолюбительскую конструкцию с напряжением от 1 до 35 В и которой не страшны большие токи нагрузки, поскольку введена токовая защита.
Регулятор напряжения собран на микросхеме DA1, которая дополнена мощным транзистором, который может отдать в нагрузку ток до 5 А. При сопротивлении резистора R5=0,3 Ом максимальный ток нагрузки составляет 2,8 А.
При дальнейшем повышении тока до 2,9-3 А срабатывает защита, выполненная на оптроне VD6. Когда напряжение на R5 станет большим, загорается светодиод внутри оптрона VD6.
Открывается динисторный тиристор и пропускает отрицательное напряжение на вывод 8 микросхемы DA1, что приводит к падению напряжения на выходе стабилизатора до 1 В. Вернуть напряжение на выходе стабилизатора можно нажатием кнопки SA2. Регулируют напряжение на выходе резистором R4.
Для сглаживания по низким и высоким частотам служат дроссель Др1 и конденсаторы С2, С3. Применение оптрона повышает надежность и быстродействие защиты.

Конструкция и детали

В блоке питания применены следующие детали. Трансформатор Т1 любой с выходным напряжением 35 В и током не менее 3,5 А, конденсатор С1 любой с номинальным напряжением 250 В, вместо С4 можно использовать импортный 1000 мкФ х 50 В. Резисторы R1-R3 типа МЛТ мощностью 0,25 Вт. Микросхема DA1 типа К142ЕН12, полным ее аналогом является микросхема зарубежного производства LM317Т. Транзистор VT1 типа КТ803А, КТ805Г, КТ808, оптрон VD6 типа АОУ103В.

Печатная плата показана на рис.2.

А.С. Ковальчук, Хмельницкая обл.


Литература — Электрик 3/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 24.09.2014

    Сенсорный выключатель показанный на рисунке имеет двухконтактный сенсорный элемент, при касании обеих контактов напряжение питания (9В) от источника питания подается в нагрузку, а при следующем касании сенсорных контактов питания отключается от нагрузки, нагрузкой может быть лампа или реле. Сенсор очень экономичен и потребляет малый ток в режиме ожидания. В момент …

  • 08.10.2016

    MAX9710/MAX9711 — стерео/моно УМЗЧ с выходной мозностью 3 Вт имеющие режим пониженного потребления. Технические характеристики: Выходная мощность 3 Вт на нагрузке 3 Ом (при КНИ до 1%) Выходная мощность 2,6 Вт на нагрузке 4 Ом (при КНИ до 1%) Выходная мощность 1,4 Вт на нагрузке 8 Ом (при КНИ до 1%) Коэффициент подавления шумов …

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Предлагаемый стабилизатор имеет раздельную защиту от перегрузки по току и КЗ. При КЗ на выходе стабилизатора срабатывает узел защиты на VT3 (рис.1). При перегрузке по току срабатывает защита на VS1 и К1.


Рис.1. Схема стабилизатора напряжения

Узел электронной защиты срабатывает, когда ток нагрузки создает на резисторе R6 падение напряжения, достаточное для открывания тиристора VS1, т.е. когда разность напряжений между управляющим электродом и катодом тиристора достигает приблизительно 1 В. Возникающий при этом отрицательный импульс напряжения через диод VD3 поступает на базу транзистора VT3 и практически закрывает его, а следовательно, и регулирующий транзистор VT1. Одновременно диод VD3 защищает транзистор VT3 от попадания на его базу положительного напряжения из анодной цепи тиристора.

Однако электронная система защиты все же не предохраняет полностью транзистор VT1 от теплового пробоя остаточным током, особенно если транзистор уже был разогрет в процессе работы, или продолжительное время не нажимали кнопку SB1.

Для предотвращения теплового пробоя транзистора VT1 и служит электромагнитная система защиты, срабатывающая через несколько миллисекунд (зависит от используемого реле К1) после того, как тиристор VS1 откроется. Тогда срабатывает реле К1. Его контакты К1.1 замыкают базу VT3 на минусовый проводник источника питания, а контакты К1.2 включают светодиод HL2 - сигнализатор действия защиты. После устранения причины перегрузки достаточно кратковременно нажать кнопку SB1, чтобы восстановить прежний режим работы блока питания, не отключая устройство от сети.

На вход стабилизатора подается от выпрямителя постоянное напряжение 40 В. Выходное стабилизированное напряжение от 3 В до 30 В устанавливается резистором R2. Максимальный ток нагрузки - 2 А. Ток нагрузки контролируют головкой РА1, переключив SA1.

Детали стабилизатора смонтированы на плате из фольгированного стеклотекстолита (рис. 2 и 3) и на лицевой панели корпуса блока питания. Регулирующий транзистор VT1 установлен на теплоотводе. Транзистор КТ825А можно заменить на КТ825Б, Г; КТ818В, Г, ВМ, ГМ; КТ814Г - на КТ814В, Б; КТ816Б, В, Г; КТ315В - на КТ315Г, Д, Е.


Рис.2. Печатная плата - сторона печатных проводников


Рис.3. Печатная плата - сторона монтажа

Тиристор КУ202К заменяется на КУ201В...КУ201Л, КУ202В...КУ202Н. Вместо диода Д220А (VD2) подойдут Д219, Д220, Д223, КД102, КД103 с любыми буквенными индексами, а вместо диода КД105Б (VD3, VD4, VD5) - КД106А или любой другой кремниевый с прямым током до 300 мА и обратным напряжением не менее 50 В.

Переменный резистор R2 - любого типа с характеристикой А. Реле К1 - РЭС48А (паспорт РС4.590.206) или другое с двумя группами переключающих контактов, срабатывающее при напряжении не более 30 В.

Резистор R6 выполнен в виде нескольких витков константанового, нихромового или манганинового провода, намотанного на корпус резистора МЛТ-1. Его сопротивление определяется значением тока срабатывания, что, в свою очередь, зависит от напряжения на управляющем электроде тиристора, при котором он открывается. Так, например, если за максимальный ток срабатывания защиты принять 2 А, а тиристор открывается при напряжении на управляющем электроде около 1 В, сопротивление резистора R6 должно быть (по закону Ома) близко к 0,5 Ом. Возможно применение резисторов типа С5-16 соответствующей мощности.

Более точно сопротивление резистора подгоняют под выбранный предел срабатывания защиты в таком порядке. К выходу стабилизатора подключают соединенные последовательно амперметр и проволочный переменный резистор сопротивлением 25...30 Ом. На вход стабилизатора подают соответствующее напряжение от выпрямителя, и резистором R2 устанавливают на выходе напряжение 10...15 В. Затем переменным резистором, выполняющим функцию эквивалента нагрузки, устанавливают по амперметру ток, равный 2 А, и подбором сопротивления резистора R6 добиваются срабатывания системы защиты.

В радиолюбительской практике нередки обстоятельства когда от перегрузки токами меньшего значения, например, 50 или 100 мА, защищать приходится не только сам стабилизатор напряжения, но и питающееся от него устройство. При этом желательно иметь ступенчатую систему защиты, выполненную, например, по схеме, приведенной на рис.4. Здесь резистор R6.1 первой ступени, рассчитанный на минимальный ток защиты 50 мА, включен в стабилизатор постоянно, а параллельно ему переключателем SA2 подключают резисторы R6.2...R6.5 четырех других ступеней: 100 мА, 500 мА, 1 А и 2 А.


Рис.4. Ступенчатая система защиты

Указанные на схеме сопротивления резисторов - ориентировочные. Точнее их можно рассчитать, лишь зная напряжение открывания тиристора, работающего в стабилизаторе. Измерить это напряжение можно так. Движок переменного резистора R2 установите в крайнее нижнее (по схеме) положение и подключите к нему управляющий электрод тиристора, отпаяв его от правого (по схеме) вывода резистора R6.1. Затем включите питание и медленно увеличивайте резистором R2 напряжение на управляющем электроде тиристора. В момент открывания тиристора, о чем просигнализирует светодиод, измерьте вольтметром это напряжение.

Резисторы R6.2...R6.5 монтируются непосредственно на контактах переключателя SA2. Резисторы RS1 и R12 подбираются конкретно под имеющийся измерительный прибор.

Источники

  1. О.Лукьянчиков. Стабилизатор напряжения с двойной защитой от КЗ в нагрузке. - Радио, 1986, N9, С.56.
  2. А.Бизер. Защитные устройства блоков питания. - Радио, 1977, N2, С.47.
  3. Ю.Тимлин. Сдвоенный двухполярный блок питания. - В помощь радиолюбителю, вып. 71. - М.: ДОСААФ, 1980
  4. В.Борисов. Стабилизированный блок питания. - Радио, 1979, N6, С.54.

Схемы устройств для защиты от перегрузки стабилизированного выпрямителя при коротком замыкании или по другой причине.

Перегрузка стабилизированного выпрямителя при коротком замыкании в нагрузке или по другой причине обычно приводит к выходу из строя регулирующего транзистора. Защитить стабилизатор от перегрузки можно с помощью защитного устройства.

Простое защитное устройство

Защитное устройство, входящее в стабилизатор блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей «релейностью», т. е. малым влиянием на характеристики блока врабочем режиме и надежным закрыванием регулирующего транзистора V2 в режиме перегрузки. Защитное устройство состоит из тринистора V3, диодов V6, V7 и резисторов R2 и R3.

Рис. 1. Схема простого защитного устройства по линии питания +24В.

В рабочем режиме тринистор V3 закрыт и напряжение на базе транзистора V1 равно напряжению стабилизации цепочки стабилитронов V4, V5.

При перегрузке ток через резистор R2 и падение напряжения на нем достигают значений, достаточных для открывания тринистора V3 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов V4, V5, что приводит к закрыванию транзисторов V1 и V2.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку S1. При этом тиристор закроется» а транзисторы V1 и V2 снова откроются. Резистор R3 и диоды V6, V7 защищают управляющий переход тринистора V3 от перегрузок по току и напряжению соответственно.

Стабилизатор обеспечивает коэффициент стабилизации около 30, защита срабатывает при токе, превышающем 2 А.

Транзистор V2 можно заменить на КТ802А, КТ805Б, а V1 — П307, П309, КТ601, КТ602 с любым буквенным индексом. Тринистор V3 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.

Стабилизатор с защитой для блока питания

Стабилизатор блока питания, схема которого изображена на рис. 2 может быть защищен от перегрузок и коротких замыканий нагрузки добавлением всего двух элементов — тиристора V3 и резистора R5.

Рис. 2. Принципиальная схема стабилизатора для блока питания с защитой (0-27В).

Защитное устройство срабатывает, когда ток нагрузки превысит пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на резисторе R5 достигает напряжения открывания тиристора V3 (около 1 В), он открывается, и напряжение на базе транзистора V2 уменьшается почти до нуля. Поэтому транзистор V2, а затем и V4 закрывают, отключая цепь нагрузки.

Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку S1. Резистор R3 служит для ограничения тока базы транзистора V4.

Резистор R5 наматывают медным проводом. Выходное сопротивление стабилизатора можно уменьшить, если R5 включить так, как показано на схеме штриховой линией. Если при включении стабилизатора будут наблюдаться ложные срабатывания, конденсатор С2 следует исключить из устройства.

Максимальный ток нагрузки — 2 А. Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор V2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.

Стабилизатор с установкой порогового тока для защиты

Защитное устройство, изображенное на рис. 3, собрано на транзисторах V1 и V2 (в его состав входят также резисторы R1—R4, стабилитрон V3, переключатель S1 и лампа накаливания H1).

Требуемое значение тока срабатывания устанавливают переключателем S1. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор V1 открыт и падение напряжения на нем невелико.

Рис. 3. Принципиальная схема стабилизатора с установкой порогового тока для защиты.

Поэтому ток в базовой цепи транзистора V2 очень мал, стабилитрон V3, включенный в прямом направлении, и транзистор V2 закрыты.

С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе V1 увеличивается. В некоторый момент стабилитрон V3 открывается, вслед за ним открывается транзистор V2, что приводит к закрыванию транзистора V1. Теперь на этом транзисторе падает почти все входное напряжение, и ток через нагрузку резко уменьшается до нескольких десятков миллиампер.

Лампа Н1 загорается, указывая на срабатывание предохранителя. В исходный режим его возвращают, кратковременно отключая от сети. Коэффициент стабилизации — около 20.

Транзисторы V1 и V7 установлены на теплоотводах с эффективной площадью теплового рассеяния около 250 см2 каждый. Стабилитроны V4 и V5 укреплены на медной теплоотводящей пластине размерами 150 X 40 X 4 мм. Налаживание электронного предохранителя сводится к подбору резисторов R1—R3 по требуемому току срабатывания.

Лампа H1 типа КМ60-75.

Электронно-механическое устройство защиты от перенагрузки

Электронно-механическое устройство защиты, схема которого изображена на рис. 4, срабатывает в два этапа — сначала выключает питание электронного устройства, затем полностью блокирует нагрузку контактами К1.1 электромеханического реле К1. Оно состоит из транзистора V3, нагруженного двухобмоточным электромагнитным реле К1, стабилитрона V2, диодов V1, V4 и резисторов R1 и R2.

Рис. 4. Электронно-механическое устройство защиты, принципиальная схема.

Каскад на транзисторе V3 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне V2, включенном в прямом направлении.

При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне, и транзистор V3 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор V3 — реле К1 развивается блокинг-процесс.

Длительность импульса — около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора V3 резко уменьшается.

Это напряжение через диод V4 передается на базу регулирующего транзистора V5 (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается, и ток через цепь нагрузки резко уменьшается.

Одновременно с открыванием транзистора V3 начинает увеличиваться ток через коллекторную обмотку реле К1, и через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами К1.1. Для восстановления рабочего режима на короткое время отключают напряжение сети. Защита срабатывает при токе 0,4 А, коэффициент стабилизации равен 50.

Защита от перенагрузки по току с использованием динисторного оптрона

В защитном устройстве, схема которого изображена на рис. 5, используют динисторный оптрон V6, что повышает быстродействие защиты. При токе нагрузки, меньшем порогового, электронный ключ на транзисторах V1—V3 открыт, индикаторная лампа H1 горит, а оптрон выключен (светодиод не горит, фототиристор закрыт).

Рис. 5. Схема защиты от перенагрузки по току с использованием динисторного оптрона.

Как только ток нагрузки достигнет порогового значения, падение напряжения на резисторах R5, R6 возрастает настолько, что включится оптрон, через фототиристор которого на базу транзистора V1 поступит положительное напряжение, и электронный ключ закроется. В рабочее состояние устройство возвращают кратковременным нажатием на кнопку S1.

Напряжение на нагрузке возрастает медленно, со скоростью зарядки конденсатора C1. Это устраняет броски тока, вызывающие либо ложное срабатывание защиты» либо выход из строя деталей нагрузки при включении питания.

Порог срабатывания устанавливают резистором R5. Для транзисторов V2, V3 требуется теплоотвод площадью 100...200 см2. Максимальный ток нагрузки 5 А, минимальный ток срабатывания 0,4 А.

Стабилизатор тока с защитой от КЗ

Защита стабилизатора тока от перегрузки

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема регулируемого стабилизатора тока взята из статьи . Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье .

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.