Операционный усилитель 741 datasheet. Легендарные аналоговые микросхемы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГОБУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ
УНИВЕРСИТЕТ»

Кафедра электротехники и информационных систем

Реферат по теме:

«Генераторы прямоугольных сигналов на операционных усилителях»

Выполнил:

Черечукин А.В.

Проверил:

Шагаев О.Ф

Москва

Генераторы прямоугольных сигналов на операционных усилителях

Операционный усилитель (ОУ )- усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Операционные усилители (ОУ) являются основной частью всей современной электронной измерительной аппаратуры. Исторически ОУ получили свое развитие в области аналогового вычисления, где эти схемы разрабатывались для суммирования, вычитания, умножения, интегрирования, дифференцирования и т.д., с целью решения дифференциальных уравнений во многих технических задачах. Сегодня аналоговые вычислительные устройства в основном заменены цифровыми, однако высокие функциональные возможности ОУ по-прежнему находят себе применение и поэтому их используют во многих электронных схемах и приборах.


Внутренняя схема операционного усилителя 741 серии

  1. Дифференциальный усилитель - предназначен для усиления сигнала, имеет низкий уровень собственных шумов, высокое входное сопротивление и обычно дифференциальный выход.
  2. Усилитель напряжения - обеспечивает высокое усиление сигнала по напряжению, имеет спадающую амплитудно-частотную характеристику с одним полюсом, и обычно имеет один выход.
  3. Выходной усилитель - обеспечивает высокую нагрузочную способность, низкое выходное сопротивление, ограничение тока и защиту при коротком замыкании.



Генератор сигналов - это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т.д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например усилителя охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра)

Применение . Неотъемлемой частью почти любого электронного устройства является генератор. Кроме генераторов испытательных сигналов, выполняемых в виде отдельных изделий, источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах, инициирующих измерения или технологические процессы, и вообще в любом приборе, работа которого связана с периодическими состояниями или периодическими колебаниями. Так, например, генераторы колебаний специальной формы используются в цифровых измерительных приборах, осциллографах, радиоприемниках, телевизорах, часах, ЭВМ и множестве других устройств.

Схемотехнически электронный генератор представляет собой усилитель, охваченный положительной обратной связью. В качестве усилителя могут быть использованы схемы на дискретных транзисторах, цифровые ИМС, интегральные таймеры, а также операционные усилители. Использование ОУ позволяет построить стабильные многофункциональные генераторы с хорошим воспроизведением формы выходного сигнала, минимальные по габаритам.


Генераторы импульсных сигналов, или генераторы импульсов, предназначены для получения от источника питания постоянного напряжения электрических колебаний резко несинусоидальной формы, называемых релаксационными. Для таких колебаний характерно наличие участков сравнительно медленного изменения напряжения и участков, на которых напряжение изменяется скачкообразно.

Для импульсных генераторов характерно наличие внешней и внутренней положительной обратной связи (ОС), обуславливающей возможность их самовозбуждения и скоротечный (лавинообразный, регенеративный) процесс перехода активных элементов генератора из одного крайнего (закрытого, открытого) в другое (открытое, закрытое) состояние.

Импульсные генераторы делятся на генераторы прямоугольных , трапецеидальных, пилообразных сигналов (импульсов)

Остановимся на прямоугольных ИП, которые могут работать в трех основных режимах: автоколебательном, ждущем и в режиме синхронизации.

Генераторы, предназначенные для получения колебаний прямоугольной формы, называют мультивибраторами. В отличие от генераторов гармонических колебаний в мультивибраторе используется цепь обратной связи первого порядка, а активный элемент работает в нелинейном режиме.

Мультивибраторы работают в режиме автоколебаний или в ждущем режиме. Соответственно, различают автоколебательные и моностабильные (ждущие) мультивибраторы.

Схема автоколебательного мультивибратора на операционном усилителе показана на рис. 6.4.1. Активным элементом является инвертирующий триггер Шмитта, реализованный на ОУ и резисторах R 1 , R 2 . Резистор R 3 и конденсатор C формируют времязадающую цепь, определяющую длительность формируемых импульсов.

Операционный усилитель охвачен положительной обратной связью (цепь R 1 - R 2) и находится в режиме насыщения, поэтому напряжение на выходе и вых = ±и нас. Переключение ОУ из положительного насыщения в отрицательное и обратно происходит, когда напряжение на инвертирующем входе достигает положительного и отрицательного порогов срабатывания, равных +PU нас и -0U нас соответственно. Здесь Р - коэффициент обратной связи: р = R 1 /(R 1 + R 2).


Постоянная времени т = R 3 C . В момент t l напряжение u C (t) достигает величины PU нас, ОУ переключается в состояние отрицательного насыщения. Выходное напряжение скачком принимает значение, равное - и нас. Начинается перезарядка конденсатора. Напряжение u C (t) изменяется по



Мультивибратор на рис. 6.4.1 является симметричным, поскольку положительные и отрицательные импульсы равны. Положительные и отрицательные импульсы различной длительности можно получить в несимметричном мультивибраторе, показанном на рис. 6.4.4. Перезарядка конденсатора во время формирования положительных и отрицательных импульсов осуществляется через различные резисторы. Когда напряжение на выходе ОУ положительно, открыт диод VD1 и перезарядка происходит с постоянной времени т 1 = R 3 C. Когда напряжение на выходе ОУ

отрицательно, открыт диод VD2 и постоянная времени т 2 = R 4 C. Можно менять длительность положительных и отрицательных импульсов, варьируя сопротивления резисторов R 3 и R 4 .



Ждущие мультивибраторы. Назначение таких устройств - получение одиночных импульсов заданной длительности. Схема ждущего мультивибратора показана на рис. 6.4.5. Импульс на выходе возникает при
подаче на вход специального запускающего сигнала. Поскольку на входе включена дифференцирующая цепь, форма и длительность такого сигнала могут быть произвольными.

Устойчивое состояние ждущего мультивибратора достигается включением диода VD параллельно конденсатору C l . Когда выходное напряжение и вых = -и нас, диод открыт и напряжение конденсатора и с ≈ 0.7 В.

Дифференциальное напряжение на входе ОУ отрицательно, и схема находится в устойчивом состоянии. Этому режиму соответствует интервал 0 - t l на рис. 6.4.6. При подаче на вход импульса положительной полярности в момент tj дифференциальное напряжение на входе ОУ становится положительным и ОУ переключается в состояние положительного насыщения: U вых (t x)=+U нас. Диод закрывается, и конденсатор C x начинает заряжаться. Когда напряжение на инвертирующем входе ОУ достигает величины ри нас (момент t 2), дифференциальное напряжение становится отрицательным и ОУ переключается в состояние отрицательного насыщения: U вых (t 2)=-U нас. Напряжение и С (t) начинает уменьшаться. Когда и С (t) достигает значения - 0.7 B, диод открывается и схема вновь оказывается в устойчивом состоянии.



Список используемой литературы.

http://beez-develop.ru/index.php/faq/useful-shems/73--square-generator

http://gendocs.ru/v12155

Наименование модели: LM741CN

Подробное описание

Производитель: National Semiconductor

Описание: ИС, операционный усилитель, COMPENSATED, DIP8, 741

Краткое содержание документа:
LM741 Operational Amplifier
August 2000
LM741 Operational Amplifier
General Description
The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709.

They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Спецификации:

  • Тип ОУ: General Purpose
  • Количество усилителей: 1
  • Полоса частот: 1 МГц
  • Скорость нарастания: 0.5 В/мкс
  • Диапазон напряжения питания: 10 В... 36 В
  • Тип корпуса: DIP
  • Количество выводов: 8
  • SVHC: No SVHC (15-Dec-2010)
  • Тип усилителя: Compensated
  • Семейство: 741
  • Маркировка: LM741CN
  • Добротность: 1.5 МГц
  • IC Generic Number: 741
  • Рабочий диапазон температрур: Commercial
  • Напряжение смещения входа максимальное: 6 мВ
  • Количество логических функций: 741
  • Особенности ОУ: Compensated Amp
  • Напряжение питания (+) номинальное: 15 В
  • Способ монтажа: Through Hole

Дополнительные аксессуары:

  • Fairchild - LM741CN
  • Fischer Elektronik - ICK SMD A 8 SA
  • National Semiconductor - LM741CN

Исполнение: DIP8. IC, OP-AMP COMPENSATED,TUBE40; Amplifiers, No. of:1; Op Amp Type:General Purpose; Gain, Bandwidth -3dB:1MHz; Slew Rate:0.5; Voltage, Supply Min:10V; Voltage,...

Оригинальный μA741 был разработан в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, использовавшего внешний конденсатор частотной коррекции, в μA741 этот конденсатор был выполнен непосредственно на кристалле ИС. Простота применения μA741 и совершенные для своего времени характеристики способствовали широкому применению новой схемы и сделали её «типовым» универсальным ОУ. Несмотря на появление значительно лучших по характеристикам аналогичных микросхем ОУ 741 и его клоны по состоянию на 2015 год все ещё выпускаются множеством производителей (например LM741, AD741, К140УД7).

Несмотря на то, что проще и полезнее рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также иметь представление о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ различных марок отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

Части схемы, обведённые красной линией являются токовыми зеркалами . Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе). Первичный ток составляет примерно

Токовое зеркало Q12/Q13 обеспечивает для усилителя класса А постоянный ток нагрузки, этот ток практически не зависит от выходного напряжения ОУ.

Часть схемы, обведённая синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители , они нагружены на пару транзисторов Q3 и Q4, включённых как усилители с общей базой . Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Дифференциальный усилитель из транзисторов Q1 - Q4 имеет активную нагрузку - токовое зеркало, состоящее из транзисторов Q5 - Q7. Транзистор Q7 увеличивает точность (равенство токов в ветвях) токового зеркала путём уменьшения тока сигнала, отбираемого с коллектора Q3 для управления базами транзисторов Q5 и Q6. Это токовое зеркало обеспечивает преобразование дифференциального сигнала в недифференциальный следующим образом:

Таким образом, сумма вдвое превышает токи, текущие через транзисторы Q3 и Q4. Напряжение сигнала на коллекторе Q4 в режиме холостого хода равно произведению суммы сигнальных токов и сопротивлений коллекторов Q4 и Q6, включённых параллельно. Это произведение относительно велико, поскольку сопротивления коллекторов для токов сигнала большие .

Следует отметить, что ток базы входных транзисторов ненулевой и дифференциальное сопротивление входа ОУ 741 составляет примерно 2 MΩ .

ОУ имеет два вывода балансировки (на рисунке обозначены Offset ), которые обеспечивают возможность подстройки напряжения смещения входа ОУ до нулевого значения. Для подстройки нужно подключить к выводам потенциометр .

Часть схемы, обведённая пурпурной линией, является усилительным каскадом класса А. Он состоит из двух n-p-n транзисторов, включённых как пара Дарлингтона . Коллекторной нагрузкой является выходная часть токового зеркала Q12/Q13, благодаря чему достигается высокое усиление этого каскада. Конденсатор ёмкостью 30 пФ обеспечивает частотно-зависимую отрицательную обратную связь , которая повышает устойчивость ОУ при работе с внешней обратной связью. Такая техника называется компенсация Миллера , она функционирует практически так же, как и интегратор , построенный на ОУ. Полюс может находиться на достаточно низкой частоте, например 10 Гц для ОУ 741. Соответственно, на этой частоте происходит спад −3 дБ амплитудно-частотной характеристики ОУ при разомкнутой петле внешней обратной связи. Частотная компенсация обеспечивает безусловную стабильность ОУ в широком диапазоне условий и тем самым упрощает его применение.

Часть схемы, обведённая зелёной линией, предназначена для правильного смещения транзисторов выходного каскада. Эта часть схемы представляет собой умножитель напряжения база-эмиттер - двухполюсник, поддерживающий на своих выводах постоянную разность потенциалов вне зависимости от протекающего тока. Фактически, это аналог стабилитрона , выполненный на транзисторе Q16. Если считать ток базы транзистора Q16 равным нулю, а напряжение база-эмиттер равным 0.625 В (типичное напряжение база-эмиттер для кремниевых биполярных транзисторов), то ток, текущий через резисторы 4.5 kΩ и 7.5 kΩ будут одинаковы, а напряжение на резисторе 4.5 kΩ составит 0.375 В. Таким образом, напряжение на всем двухполюснике будет равно 0.625 + 0.375 = 1 В. Это напряжение поддерживает выходные транзисторы в чуть открытом состоянии, что уменьшает искажения типа «ступенька ».

Поддержание напряжения смещения путём умножения напряжения база-эмиттер примечательно тем, что при изменениях температуры напряжения база-эмиттер меняются одновременно и у смещаемого каскада, и у цепи смещения, то есть температурно-зависимые эффекты взаимно вычитаются. Это обстоятельство значительно улучшает термостабильность режима смещаемых транзисторов, особенно в интегральных схемах, где все транзисторы имеют одинаковую температуру (поскольку находятся на одном кристалле).

В некоторых усилителях, выполненных на дискретных компонентах, функцию смещения выходных транзисторов выполняют последовательно включённые полупроводниковые диоды (обычно два диода).

Выходной каскад (обведён голубой линией) класса AB - двухтактный эмиттерный повторитель (Q14, Q20), смещение которого устанавливается умножителем напряжения V be (Q16 и резисторы, соединённые с его базой). На выходной каскад подаётся сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Резистор сопротивлением 25 Ω в выходном каскаде служит датчиком тока. Этот резистор совместно с транзистором Q17 ограничивает ток эмиттерного повторителя Q14 на уровне примерно 25 мА. Ограничение тока в нижнем плече (транзистор Q20) двухтактного выходного каскада осуществляется путём измерения тока через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более новых вариантах схемотехники ОУ 741 могут использоваться несколько иные методы ограничения выходного тока.

Операционный усилитель 741

Операционный усилитель 741 (другие обозначения: uA741, μA741) - универсальный интегральных операционный усилитель второго поколения на биполярных транзисторах. Оригинальный μA741 был изобретен в 1968 году Дэвидом Фуллагаром из Fairchild Semiconductor на основе разработанного Бобом Видларом LM101. В отличие от LM101, который основывался на внешнем конденсаторе частотной коррекции, в μA741 этот конденсатор базировался на кристалле ИС. Простота применения μA741 и отличные для своего времени показатели привели к широкому использованию новой схемы и сделали её «типовым» универсальным ОУ.

Структура ОУ

Несмотря на то, что логично рассматривать операционный усилитель как чёрный ящик с характеристиками идеального ОУ, важно также обладать знаниями о внутренней структуре ОУ и принципах его работы, так как при разработке с использованием ОУ могут возникнуть проблемы, обусловленные ограничениями его схемотехники.

Структура ОУ от разных производителей отличается, но в основе лежит один и тот же принцип. ОУ второго и последующих поколений состоят из следующих функциональных блоков:

1. Дифференциальный усилитель

  • Входной каскад - обеспечивает усиление при малом уровне шума, высокое входное сопротивление. Как правило, имеет дифференциальный выход.

2. Усилитель напряжения

  • Обладает высоким коэффициентом усиления по напряжению, спад Амплитудно-частотной характеристики как у однополюсного фильтра низких частот, обычно единственный (то есть не дифференциальный) выход.

3. Выходной усилитель

  • Выходной каскад - обеспечивает высокую нагрузочную способность по току, низкое выходное сопротивление, ограничение выходного тока и защиту от короткого замыкания в нагрузке.

Токовые зеркала

Элемент схемы, обведённый красной линией является токовым зеркалом. Первичный ток, который задаёт все остальные токи, определяется напряжением питания ОУ и резистором 39 kΩ (плюс два падения напряжения на диодном переходе).

Дифференциальный входной каскад

Элемент схемы, обведенный синей линией, является дифференциальным усилителем. Транзисторы Q1 и Q2 работают как эмиттерные повторители, они нагружены на пару транзисторов Q3 и Q4, включенных как усилители с общей базой. Помимо этого Q3 и Q4 согласуют уровень напряжения и обеспечивают предварительное усиление сигнала перед подачей его на усилитель класса А.

Выходной каскад

Выходной каскад (обведён голубой линией) класса AB - двухтактный эмиттерный повторитель (Q14, Q20), смещение которого определяется с помощью умножителя напряжения Vbe (Q16 и резисторы, соединённые с его базой). На выходной каскад поступает сигнал с коллекторов транзисторов Q13 и Q19. Диапазон выходных напряжений ОУ примерно на 1 В меньше, чем напряжение питания; это обусловлено падением напряжения на полностью открытых транзисторах выходного каскада.

Среди множества микросхем, представленных на современном рынке микроэлектронных компонентов, есть настоящие легенды, по праву заслужившие свою высокую репутацию. В данной статье мы остановимся на рассмотрении четырех таких легендарных аналоговых микросхем, а именно: NE555, A741, TL431, и LM311.

Аналоговая интегральная микросхема является универсальным таймером. Она успешно служит во многих современных электронных схемах для получения повторяющихся или одиночных импульсов с постоянными временными характеристиками. Микросхема является по сути асинхронным , обладающим специфическими порогами входов, которые точно заданы внутренними аналоговыми компараторами и точным делителем напряжения.

Интегральная структура микросхемы включает в себя 23 транзистора, 16 резисторов и 2 диода. NE555 выпускается по сей день в различных корпусах, но наиболее популярна в корпусах DIP-8 и SO-8, именно в таком виде ее можно встретить на многих платах. Отечественные производители выпускают аналоги данного таймера под названием КР1006ВИ1.

История микросхемы NE555 начинается с 1970 года, когда уволенный в связи с экономическим кризисом, сотрудник американской микроэлектронной компании Signetics, специалист по схемам ФАПЧ, Ганс Камензинд, работая у себя в гараже, отладил схему ФАПЧ с ГУН, частота которого теперь не зависела от напряжения.

Эта разработка позже получила название NE566, и содержала все элементы будущего таймера NE555, включая компараторы, триггер и ключ. Схема могла вырабатывать треугольные импульсы с амплитудой задаваемой внутренним делителем, и с частотой задаваемой внешней RC-цепочкой.

Ганс Камензинд продал компании Signetics свою разработку, после чего предложил ее доработку до ждущего мультивибратора — генератора одиночных импульсов. Идею поддержали не сразу, однако руководитель отдела продаж компании Signetics, Арт Фьюри, настоял, и проект был одобрен, будущую микросхему назвали NE555 (NE от SigNEtics).

Доработка и отладка таймера заняли еще несколько месяцев, и в конце концов в 1971 году стартовали продажи NE555 в восьмивыводном корпусе по цене 75 центов. Сегодня функциональные аналоги оригинального NE555 выпускаются во множестве биполярных и КМОП-вариантов почти всеми крупными производителями электронных компонентов.

Рассмотрим теперь назначение выводов интегрального таймера NE555, это позволит читателю понять причину, по которой данная микросхема приобрела колоссальную популярность как среди специалистов, так и среди радиолюбителей.

    Первый вывод — земля. Подключается к минусовому проводу источника питания.

    Второй вывод — триггер. Когда напряжение на этом выводе ниже 1/3 напряжения питания, таймер запускается. При этом потребляемый данным входом ток не превышает 500 нА.

    Третий вывод — выход. Когда таймер включен, напряжение на этом выводе на 1,7 вольт меньше напряжения питания, а максимальный ток данного вывода достигает 200 мА.

    Четвертый вывод — сброс. При подаче на этот вывод напряжения низкого уровня, ниже 0,7 вольт, микросхема переходит в исходное состояние. Если сброс при работе в схеме не требуется, данный вывод просто соединяют с плюсом источника питания микросхемы.

    Пятый вывод — контроль. Данный вывод находится под опорным напряжением, и присоединен к инвертирующему входу первого компаратора.

    Шестой вывод — порог, стоп. При подаче на этот вывод напряжения выше 2/3 напряжения питания, таймер остановится и его выход будет переведен в состояние покоя.

    Седьмой вывод — разряд. Когда на выходе микросхемы низкий уровень, данный вывод внутри микросхемы соединяется с землей, а когда на выходе микросхемы высокий уровень, данный вывод от земли отсоединен. Этот вывод способен выдержать ток до 200 мА.

    Восьмой вывод — питание. Этот вывод подключается к плюсовому проводу источника питания микросхемы, напряжение которого может быть от 4,5 до 16 вольт.

Микросхема NE555 нашла широкое применение, благодаря своей универсальности. На ее основе строятся генераторы, модуляторы, реле времени, пороговые устройства и многие другие узлы различной электронной аппаратуры, разнообразие которой ограничено лишь фантазией и творческим подходом инженеров и разработчиков.

Примерами решаемых задач могут служить: функция восстановления искаженного в линиях связи цифрового сигнала, фильтры дребезга, импульсные источники питания, двухпозиционные регуляторы в системах автоматического регулирования, ШИМ-контроллеры, таймеры и многое другое.

Дополнительные материалы про микросхему NE555 :

uA741 — операционный усилитель на биполярных транзисторах. Этот операционный усилитель второго поколения, разработанный в 1968 году инженером компании Fairchild Semiconductor, Дэвидом Фуллагаром, является модификацией операционного усилителя LM101, к которому требовался внешний конденсатор частотной коррекции. К uA741 внешний конденсатор уже не требовался, ибо здесь он сразу установлен на самом кристалле микросхемы.

Характеристики uA741 были совершенными для того времени, а простота применения микросхемы способствовала широкому ее использованию. Так uA741 стал универсальным типовым операционным усилителем, и по сей день его аналоги выпускаются очень многими производителями микроэлектронных компонентов, например: AD741, LM741, и отечественный аналог - К140УД7. Данные микросхемы выпускаются как в корпусах DIP, так и в чиповых.

В основе операционных усилителей лежит один и тот же принцип, отличия заключаются лишь в структуре. Операционные усилители второго и следующих поколений включают в себя следующие функциональные блоки:

    Входной каскад — дифференциальный усилитель, обеспечивающий усиление при высоком входном сопротивлении и при малом уровне шума.

    Усилитель напряжения с высоким коэффициентом, АЧХ спадает как в однополюсном фильтре низких частот. Здесь не дифференциальный, единственный выход.

    Выходной каскад (усилитель), дающий высокую нагрузочную способность, низкое выходное сопротивление, и обеспечивающий защиту от короткого замыкание и ограничение выходного тока.

Интегрированный конденсатор на 30 пФ дает частотно-зависимую отрицательную обратную связь, повышающую устойчивость операционного усилителя при работе с внешней обратной связью. Это так называемая компенсация Миллера, функционирующая практически как интегратор, построенный на операционном усилителе. Частотная компенсация дает операционному усилителю безусловную стабильность в широком диапазоне условий и тем самым упрощает его применение в широком спектре электронных устройств.

В выходном каскаде uA741 присутствует резистор сопротивлением 25 Ом, служащий датчиком тока. Совместно с транзистором Q17, этот резистор ограничивает ток эмиттерного повторителя Q14 на уровне около 25 мА. В нижнем плече двухтактного выходного каскада ограничение тока через транзистор Q20 осуществляется посредством через эмиттер транзистора Q19 и последующего ограничения тока, текущего в базу Q15. В более современных модификациях схемотехники uA741 могут использоваться несколько отличающиеся от описанной здесь методы ограничения выходного тока.

Микросхема имеет два вывода Offset для балансировки, позволяющие подстраивать смещение входа операционного усилителя точно до нуля. Для этой цели можно использовать внешний потенциометр. Напряжение питания микросхемы может достигать от +-18 до +-22 вольт, в зависимости от модификации, однако рекомендуемый диапазон — от +-5 до +-15 вольт.

Смотрите также по этой теме:

Микросхема TL431 была выпущена в продажу компанией Texas Instruments в 1978 году, и позиционировалась как прецизионный регулируемый стабилизатор напряжения. Предшествующей версией была менее точная микросхема TL430. Сегодня TL431 выпускают многие производители под маркировками: LM431, KA431, а ее отечественный аналог - КР142ЕН19А.

TL431 по сути — управляемый стабилитрон, часто встречающийся в трехвыводном корпусе TO-92. Данную микросхему можно, пожалуй, увидеть на плате любого из современных , как минимум - в схеме гальванической развязки вторичных цепей.

Микросхема достаточно просто регулируется: при подаче на управляющий электрод напряжения выше порогового 2,5 вольт, внутренний транзистор, выполняющий функцию стабилитрона, переходит в проводящее состояние.

Значения выводов очевидны из блок-схемы:

    Первый вывод - электрод управления.

    Второй вывод — несет функцию анода стабилитрона.

    Третий вывод - играет роль катода стабилитрона.

Рабочее напряжение на катоде может быть из диапазона от 2,5 до 36 вольт, а ток в проводящем состоянии не должен превышать 100 мА, при этом ток управления не превышает 4 мкА. Внутренний источник опорного напряжения имеет номинал 2,5 вольта.

Микросхема настолько проста в настройке и в использовании, что уже нашла самое широкое применение в различных электронных устройствах, начиная с импульсных блоков питания, где она традиционно работает совместно с оптроном, заканчивая датчиками освещенности и температуры.

Сегодня трудно найти бытовой прибор, где бы не было TL431, именно по этой причине данная микросхема выпускается во множестве различных корпусов. Таким образом, TL431 отлично подходит для построения цепей обратной связи в совершенно различных аспектах этого понятия.

Примеры использования микросхемы TL431 :

Аналоговый компаратор LM311 выпускается с 1973 года компанией National Semiconductor (с 23 сентября 2011 года компания официально является частью Texas Instruments). Отечественный аналог данного компаратора — КР554СА3.

Для данного интегрального компаратора напряжения характерен очень малый входной ток (150 нА). Он разработан специально для применения в широком диапазоне питающих напряжений: от стандартного +- 15В до однополярного + 5В, традиционного для цифровой логики. Выход компаратора совместим с TTL, RTL, DTL и MOS - уровнями.

Его выходной каскад с открытым коллектором позволяет непосредственно нагрузить выход на реле или на лампу накаливания, и коммутировать ток до 50 мА при напряжении до 50 В. Потребляемая микросхемой мощность составляет всего 135 мВт при питании напряжением +-15 В. В даташите на компаратор LM311 приведено множество типовых схем его применений.

Микросхема содержит 20 резисторов, 22 биполярных транзистора, 1 полевой транзистор и 2 диода. Вход и выход LM311 можно изолировать от земли схемы так, чтобы выходная цепь микросхемы работала на заземленную нагрузку или на нагрузку, подключенную к отрицательному или положительному полюсу источника питания.

В схеме компаратора есть возможности балансировки сдвига и стробирования, а выходы нескольких LM311 можно соединять по схеме проводное ИЛИ. Вероятность возникновения ложных срабатываний у данной микросхемы очень низка.