Добротность от чего зависит. Экспериментальный Q-метр

Катушка индуктивности - деталь, которая имеет спиральную обмотку и может концентрировать переменное магнитное поле. В отличие от резисторов и конденсаторов катушки индуктивности являются нестандартными радиодеталями и их конструкция определяется назначением конкретного устройства.

Основные параметры катушки индуктивности:

  • Индуктивность
  • Добротность катушки индуктивности
  • Собственная ёмкость катушки индуктивности
  • Температурная стабильность (температурный коэффициент)

Величина индуктивности прямо пропорциональна размерам катушки и количеству витков. Индуктивность также зависит от материала сердечника, введённого в катушку и наличия экрана. Расчёт катушки индуктивности выполняется с учётом этих факторов.

При введении в катушку сердечника из магнитных материалов (феррит, альсифер, карбонильное железо, магнетит) её индуктивность увеличивается. Это свойство позволяет уменьшить количество витков в катушке для получения требуемой индуктивности и тем самым уменьшить её габариты. Это особенно важно на низкочастотных диапазонах, когда нужна большая индуктивность. Погружая сердечник в катушку на разную глубину изменяют её индуктивность. Это свойство использовалось в старых радиоприёмниках при настройке на радиостанцию. В современных приборах наиболее часто это свойство используется в индуктивных бесконтактных датчиках. Такие датчики реагируют на приближение металлических предметов.

Влиять на индуктивность катушки можно и при отсутствии в ней подвижного сердечника. В этом случае одну из двух последовательно соединённых катушек помещают внутри другой. Если затем изменять её положение, то индуктивность также будет изменяться. Такая конструкция катушек называется вариометр .

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря,индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.



Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

36 . Сущность символического метода расчета состоит в том, что при синусоидальном токе можно перейти от уравнений, составленных для мгновенных значений и являющихся дифференциальными уравнениями, к алгебраическим уравнениям, составленным относительно комплексов тока и э. д. с. Этот переход основан на том, что в уравнении, составленном по законам Кирхгофа для установившегося процесса, мгновенное значение тока заменяют комплексной амплитудой тока. Мгновенное значение напряжения на активном сопротивлении u R = iR - комплексом R , по фазе совпадающим с током. Мгновенное значение напряжения на индуктивности u L = L - комплексом j L m , опережающим ток на 90°. Мгновенное значение напряжения на емкости u C = - комплексом m , отстающим от тока на 90 о. Мгновенное значение э. д. с. е - комплексом .

Рассмотрим пример расчета тока в схеме, приведенной на рис.

Уравнение для мгновенных значений можно записать так:

u R + u L + u C = e,

iR + L + = e

Запишем его в комплексной форме:

R + j L m + m = .

Решая это уравнение относительно , получим:

=

Метод называют символическим потому, что токи и напряжения заменяют их комплексными изображениями или символами. Так R - это изображение или символ падения напряжения iR ; j L m - изображение или символ падения напряжения на индуктивности L ; m изображение падения напряжения на конденсаторе .

37.ВНИМАНИЕ! Ответ частично раскрыт в предыдущем вопросе+ (все формулы, данные тут, найдены в единичном варианте, так что за правильность не ручаюсь, но, к сожалению, больше ничего найти по этому вопросу не смог, поэтому рекомендую пользоваться формулами из предыдущего вопроса).

Если в электрической цепи действуют источники энергии, ЭДС и ток которых изменяется по гармоническому закону

ek(t) = Em*k S in(w t + y ek); Jk(t) = Jm*k Sin(w t + y jk),

(Я так понимаю, что Em – это . Аналогично и для других, но я хз)

то токи и напряжения на всех участках этой цепи будут гармоническими функциями:

ik(t) = Im*k Sin(w t + y ik); uk(t) = Um*k Sin(w t + y uk),

Законы Кирхгофа справедливы для любых цепей и воздействий, в том числе и для цепей синусоидального тока.К примеру, определяя для схемы токи и напряжения, следует составить два уравнения:

i = i1+ i2 = Im*1 Sin(w t + y i1) + Im*2 Sin(w t + y i2);

uL = ur + uc = Um*r Sin(w t + y ur) + Um*c Sin(w t +y uc).

Операции с гармоническими функциями в задачах электротехники принципиально проще выполнять, представив их комплексными числами. Такой метод называется символическим или методом комплексных чисел.

Переход от мгновенных значений к комплексным амплитудам производится следующим образом:

i = Im* Sin(w t + y i) соответствует Im = Im*ejy i,

u = Um* Sin(w t + y u) соответствует Um = Um*ejy u,

38. Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора, подключённых к источнику напряжения. Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с первым правилом Кирхгофа. Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков):

I 1
C
I 2
R
U 1
A

Перенесем в правую часть слагаемые с коэффициентами U 2 и вынесем U 2 за скобки:

Приведем к общему знаменателю выражение в скобках:

Найдем результат в виде отношения U 2 / U 1 :

* Делитель напряжения может использоваться для усиления входного напряжения

* Делитель напряжения может использоваться для стабилизации входного напряжения - это возможно, если в качестве нижнего плеча делителя использовать стабилитрон.

39. Фильтр нижних частот- электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (подавляющий) частоты сигнала выше этой частоты.

* Для звуковых волн твёрдый барьер играет роль фильтра нижних частот - например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.

* Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.

* Радиопередатчики используют ФНЧ для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом и создавать помехи другим радиоэлектронным средствам.

* Механические низкочастотные фильтры часто используют в контурах АВМ непрерывных систем управления в качестве корректирующих звеньев.

* В обработке изображений низкочастотные фильтры используются для очистки картинки от шума и создания спецэффектов, а также при сжатии изображений.

U 2
I 1
C
I 2
R
U 1
A

Фильтр верхних частот (ФВЧ) - электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала ниже частоты среза. Степень подавления зависит от конкретного типа фильтра.

Простейший электронный фильтр верхних частот состоит из последовательно соединённых конденсатора и резистора. Конденсатор пропускает лишь переменный ток, а выходное напряжение снимается с резистора. Произведение сопротивления на ёмкость (R×C) является постоянной времени для такого фильтра, которая обратно пропорциональна частоте среза в герцах:

* Подобный фильтр используется для выделения высоких частот из сигнала и часто используется в обработке аудиосигналов, например в кроссоверах. Ещё одно важное применение фильтра верхних частот - устранение лишь постоянной составляющей, для чего частоту среза выбирают достаточно низкой.

* Фильтры верхних частот используются в простых бестрансформаторных конденсаторных преобразователях напряжения для понижения напряжения переменного тока. К недостаткам таких преобразователей относится их высокая чувствительность к импульсным помехам в источнике переменного тока, а также зависимость выходного напряжения от импеданса нагрузки.

* Фильтры верхних частот используются в обработке изображений для того, чтобы осуществлять преобразования в частотной области (например, для выделения границ).

* Используется также последовательное включение фильтра верхних частот с фильтром нижних частот (ФНЧ). Если при этом частота среза ФВЧ меньше, чем частота среза ФНЧ (то есть, имеется диапазон частот, в котором оба фильтра пропускают сигнал), получится полосовой фильтр (используется для выделения из сигнала определённой полосы частот).

41. Полосовой RC - фильтр.

U вых
R 2
C 2
U вх
R 1
C 1
Пассивный полосовой RC - фильтр. Путем последовательного соединения фильтров верхних и нижних частот получают полосовой фильтр. Его выходное напряжение равно нулю на высоких и низких частотах. Одна из возможных схем представлена на рисунке 6.19.

Рисунок 6.16 - Принципиальная схема полосового RC – фильтра

Рассчитаем выходное напряжение и фазовый сдвиг на средних частотах. Формула комплексного выходного напряжения для ненагруженного фильтра имеет вид

После преобразований, получим

Обозначив , получим комплексный коэффициент передачи

Выражение для коэффициента передачи по напряжению для полосового фильтра при R1=R2=R и C1=C2=C имеет вид

График зависимости (3.9) показан на рис. 3.6. Как видно на данном рисунке, АЧХ полосового фильтра напоминает резонансную кривую колебательного контура. Поэтому соответствующую частоту называют квазирезонансной. Ее значение может быть получено из выражения (3.9) с учетом соотношения (3.10)

Рисунок 6.17 – Графики АЧХ и ФЧХ полосового фильтра

Добро́тность - свойство колебательной системы, определяющее полосу резонанса и показывающее, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

Общая формула для добротности любой колебательной системы:

· - резонансная частота колебаний

· - энергия, запасённая в колебательной системе

· - рассеиваемая мощность.

Например, в электрической резонансной цепи энергия рассеивается из-за конечного сопротивления цепи, в кварцевом кристалле затухание колебаний обусловлено внутренним трением в кристалле, в объемных электромагнитных резонаторах теряется в стенках резонатора, в его материале и в элементах связи, в оптических резонаторах - на зеркалах.

Для Колебательного контура в RLC цепях:

где , и - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

6) Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

Пусть совершаются два гармонических колебания одного направления и одинаковой частоты

(4.1)

Уравнение результирующего колебания будет иметь вид

Убедимся в этом, сложив уравнения системы (4.1)

Применив теорему косинусов суммы и сделав алгебраические преобразования:

Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения

(4.3)

Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:

Подставляя (4.3) в (4.2), получим:

Или окончательно, используя теорему косинусов суммы, имеем:

Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.

В зависимости от разности фаз (φ2-φ1):

1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;

2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний

Биение

Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.


Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю.

Повышение Q контура
А. Партин, г. Екатеринбург

Основным показателей эффективности колебательного контура является добротность (Q). Физический смысл добротности - отношение запасенной в контуре энергии к рассеиваемой. Добротность зависит от потерь энергии в контуре, которые вызваны нагревом проводов, потерями в конденсаторе и катушке индуктивности, а также излучением электромагнитных волн в окружающую среду. Как бы идеально ни изготавливался колебательный контур, он обязательно имеет активное сопротивление.
Активное сопротивление катушки с ростом частоты возрастает и может увеличиваться в десятки раз. Это вызвано тем, что переменный ток высокой частоты вытесняется ближе к поверхности проводника (скин-эффект). Вот почему для увеличения добротности катушек их мотают многожильным изолированным проводом типа ЛЭШО. Добротность контурной катушки QL определяется:

где
- частота контура;
L - интдуктивность катушки;
RL - сопротивление потерь.
Добротность конденсатора Qc вычисляется по формуле


где
С - ёмкость конденсатора;
RС - сопротивление потерь.

Добротность контура Q тем выше, чем выше добротность его элементов и определяется выражением:

; .

где
ρ - характеристическое (волновое) сопротивление контура;
r=rC +rL - суммарное сопротивление контура.

Не надо забывать основную формулу, определяющую резонансную частоту fp колебательного контура:

Следовательно, добиваясь изменения одного параметра контура, например, L, чтобы не «уплывала» частота, произведение LC должно оставаться постоянным. Одну и ту же резонансную частоту можно получить при разных значениях индуктивности и ёмкости, подобно тому как одну и ту же площадь прямоугольника можно получить при разных соотношениях его сторон. Для того чтобы получить высокую добротность контура, выбор величин L и С требует определенных условий. При конструировании колебательных контуров с высокой добротностью предпочтение следует отдавать катушкам с большей индуктивностью. Большая индуктивность - это большое количество витков, а для высокой добротности провод следует брать как можно толще, что не всегда возможно.

Применение ферромагнитных сердечников позволяет уменьшить размеры катушек и повысить их добротность. Кроме того, с помощью подстроечных сердечников легко регулировать индуктивность катушек. Однако с ферромагнитными сердечниками появляется зависимость индуктивности и, соответственно, добротности катушек от величины протекающего тока. Особенно сильной эта зависимость окидывается в замкнутых магнитопроводах (тороидах). С увеличением тока происходит потеря магнитных свойств сердечника.

На рис.1 показан транзисторный резонансный усилитель на частоту 503 кГц, а в табл.1 приведены L, С и соответствующее значение коэффициента усиления.
На рис.2 показан заграждающий фильтр на эту же частоту (503 кГц), в табл.2 - номиналы LC-компонентов и коэффициента ослабления Кос фильтра.

Предлагаю пару практических советов , которые позволят довольно просто настроить колебательный контур на определенную частоту. Для этого требуется генератор стандартных сигналов (ГСС-6, Г4-18а, Г4-42 и др.) и любой низкочастотный осциллограф.
Способ 1 . Соединяем катушку и заранее отградуированный конденсатор переменной емкости в последовательную цепь (рис.За). Эта цепь включается в гнездо 1 В генератора (ГСС). Все аттенюаторы устанавливаются в максимальное положение. Перед измерением включаем генератор, выставляем необходимую частоту и замыкаем выход генератора (1 В) на корпус. Если аттенюаторы установлены на максимум, то стрелка внутреннего вольтметра установится практически на нулевое деление.
Подключаем настраиваемую цепь. Стрелка устанавливается на определенное деление шкалы, поскольку последовательный контур на частоте, отличной от резонансной, имеет достаточно большое сопротивление. Вращая ручку эталонного конденсатора, фиксируем тот момент, когда стрелка вольтметра отклонится влево (сопротивление контура на резонансной частоте уменьшается). Чем резче отклонение стрелки, тем выше добротность контура. Отсчитываем значение емкости конденсатора. Если величина емкости мала, а отклонения стрелки нет, то следует смотать некоторое количество витков провода с катушки.
Способ 2 . Собираем схему по рис.3б. С резистора R1 берется сигнал на осциллограф. Вращая ручку
конденсатора, фиксируем момент минимума сигнала на осциллографе.

В основе любого радиоприемника лежит принцип избирательного воспроизведения сигнала, модулированного определенной несущей частотой, которая, в свою очередь, определяется резонансом колебательного контура, являющегося основным элементом схемы ресивера. От того, насколько правильно будет выбрана эта частота, зависит качество принимаемого сигнала.

Избирательность, или селективность приемника определяется тем, насколько сигналы, мешающие устойчивому приему, будут ослаблены, а полезные - усилены. Добротность контура - это величина, объективно демонстрирующая в числовом выражении успешность решения этой задачи.

Резонансная частота контура определяется по формуле Томпсона:

f=1/(2π√LC), в которой

L - величина индуктивности;

Для того чтобы понять, каким образом происходят колебания в контуре, следует разобраться в том, как он работает.

И емкостная, и индуктивная нагрузки препятствуют возникновению электрического тока, но делают это в противофазе. Таким образом, они создают условия для возникновения колебательного процесса, примерно так же, как это происходит на качелях, когда двое катающихся толкают их в разные стороны попеременно. Теоретически, меняя величину емкости конденсатора или катушки, можно добиться того, что резонансная частота контура совпадет с несущей частотой передающей радиостанции. Чем они больше будут отличаться, тем менее качественным будет сигнал. На практике приемник настраивают, меняя

Весь вопрос состоит в том, насколько острым будет пик на графике частотной характеристики приемного устройства. Именно так зрительно можно понять, как будет усилен полезный сигнал, насколько подавлены помехи. Добротность контура и является тем параметром, который определяет избирательность приема.

Определяется она по формуле:

Q=2πFW/P, где

F - резонансная частота контура;

W - энергия в колебательном контуре;

P - мощность рассеивания.

Добротность контура при параллельном включении конденсатора и индуктивности определяется по такой формуле:

С величинами индуктивности и емкости конденсатора все понятно, а что касается R, то оно напоминает, что кроме катушка имеет и активную составляющую. Поэтому схему контура часто изображают, включая в нее три элемента: емкость С, индуктивность L и R.

Добротность контура является величиной, обратно пропорциональной скорости затухания в нем колебаний. Чем она больше, тем медленнее происходит релаксация системы.

На практике самым значительным фактором, влияющим на добротность контура, является качество катушки, зависящее от ее сердечника, от числа витков, степени изолированности провода, и от ее сопротивления, а также от потерь при прохождении токов высокой частоты. Поэтому для регулировки частоты приема обычно применяют конденсаторы переменной величины, представляющие собой два набора пластин, входящих и выходящих друг из друга при вращении. Такая система характерна для практически всех нецифровых радиоприёмников.

Впрочем, и в ресиверах с цифровой настройкой также есть свои колебательные контуры, просто их резонансная частота меняется иначе.

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный .

Основная радиоэлементная база колебательного контура : Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / Х Σ , где Х Σ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки X L и конденсатора Х C от циклической (круговой) частоты ω , а также график зависимости от частоты ω их алгебраической суммы Х Σ . График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ω р , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R , подключенного к идеальному генератору гармонического напряжения с амплитудой U . Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На резонансной частоте, когда величины реактивных сопротивлений катушки X L = ωL и конденсатора Х С = 1/ωС равны по модулю, величина X Σ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R . При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение U L = U С = IX L = IX С .

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q . Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = Х L = Х C при ω =ω р . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C) . Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) W L = (LI 2)/2 и конденсатором (энергия электрического поля) W C =(CU 2)/2 . Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R .

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R , L и C

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R , где R -сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R . Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности B L = 1/ωL , конденсатора В C = -ωC , а также суммарной проводимости В Σ , этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты X Σ = 1/B Σ , эта кривая, изображённая на следующем рисунке, в точке ω = ω р будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление R экв = Q·ρ . На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ω р его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.