Функции электродвигателя. Электродвигатели: какие они бывают

Ни одна сфера жизнедеятельности человека сегодня не обходится без электродвигателей. Эти устройства настолько прочно вошли в нашу повседневность, что выход из строя одного из них может как минимум испортить нам настроение на день, а как максимум остановить работу целого предприятия. Электродвигатели поднимают большие грузы на стройках , приводят в движение различные станки на заводах, передвигают общественный транспорт по городу, циркулируют воздух по вентиляционным каналам, помогают готовить еду на кухне и охлаждают детали наших компьютеров. Да что там говорить, если они присутствуют даже в детских игрушках.

Несмотря на такую ​​распространенность, автомобилей с электрическим приводом выпускается значительно меньше, чем их «собратьев» с двигателем внутреннего сгорания. На это есть технические и коммерческие причины , обзор которых мы оставили для отдельной статьи. А в этом тексте рассмотрим преимущества и недостатки электродвигателя и самое главное - его принцип действия.

Электрическая машина

Для начала нужно ввести понятие электрической машины, которой называют электромеханическое устройство для преобразования электрической энергии в механическую или механической в ​​электрическую, а также электрической энергии с одними свойствами в электрическую энергию с другими свойствами. Электродвигатель, в свою очередь, является разновидностью электрической машины. Если в механизме электрическая энергия преобразуется в механическую с выделением тепла - это электродвигатель.

В основе принципа действия электродвигателя лежит электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Преобразование электрической энергии в механическую электромагнитным полем впервые продемонстрировал британский ученый Майкл Фарадей в 1821 году. Он подвесил провод и погрузил его в ртуть, в центре ванны установил постоянный магнит, через провод начал пропускать ток. В результате провод начал оборачиваться вокруг магнита, тем самым показывая, что ток вызывает циклическое магнитное поле. Это был простейший электродвигатель, непригодный для практического использования.

Первым в мире электродвигателем, который можно было эффективно использовать в различных системах, считают изобретение россиянина Бориса Якоби . В отличие от других ученых, которые работали над тем, чтобы заставить железный сердечник двигаться в магнитном поле подобно тому, как движется поршень в паровой машине, он предложил механизм с якорем, который вращается, объяснив, что такое строение значительно проще и непосредственно вращательные движения превращать в другие виды легче. Вращение в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов, которые периодически меняли полярность.

Устройство электродвигателя

С развитием науки и техники электродвигатели менялись, разрабатывались новые модели, совершенствовались старые. Но основных составляющих всегда было две: статор и ротор.

  • Статор - неподвижная часть, на которой размещены все вспомогательные детали, также используемый для закрепления на корпусе, установки на поверхности и т.д.
  • Ротор - подвижная часть двигателя, которая может вращаться внутри статора.

На обеих частях конструкции предусмотрены обмотки, которые работают как электромагниты. Также возможна комбинация из электромагнита на роторе и постоянного магнита на статоре, или наоборот. При подаче электрического тока на обмотки в них возникает магнитное поле с соответствующими полюсами. Вследствие этого происходит силовое взаимодействие между полями статора и ротора. Таким образом стороны обмоток с одинаковыми полюсами начинают отталкиваться друг от друга, а с противоположными - притягиваться. Подвижная часть сразу же пытается стать в такое положение, чтобы противоположные полюса совпадали.

Так происходит максимум пол-оборота, или 180 °. Для того, чтобы ротор двигался дальше и сделал полный оборот на угол 360 °, нужно изменить направление тока в одной из обмоток, в результате чего ее полярность изменится на противоположную и стороны с соответствующими полюсами снова начнут притягиваться. Если через определенный период переключать полярность подаваемого на обмотку тока, то вал ротора будет непрерывно вращаться.

В разных видах электродвигателей такая разница между векторами магнитных полей достигается различными путями. Например, длительное время широко применялись коллекторы, а двигатели, соответственно, назывались коллекторными. Типичный коллектор представляет собой барабан на валу ротора, на который выведены контакты всех обмоток в определенном порядке. Ток на контакты подается с помощью угольных щеточек, которые прижимаются к барабану пружинами. Недостатками такого механизма является необходимость периодической замены щеток, стирание контактов и шум, поэтому со временем более популярными стали бесколлекторные двигатели, в которых используются датчики положения ротора.

Количество обмоток на подвижной и неподвижной частях может отличаться. Чем их больше, тем больше плавность хода и более равномерно распределяется мощность.

Классификация электродвигателей

Различать типы электромоторов можно по нескольким признакам, но две самые распространенные группы отличаются по типу электропитания.

По типу тока, который подается на обмотки, электродвигатели бывают постоянного и переменного тока.

В свою очередь, первую группу в зависимости от наличия щеточно-коллекторного узла можно разделить на две: коллекторные и бесколлекторные. Возбуждение в коллекторных двигателях может происходить независимо с помощью постоянных и электрических магнитов, либо самовозбуждаться, при этом обмотка якоря может включаться параллельно, последовательно, частично-параллельно и частично-последовательно.

Среди двигателей, которые питаются от переменного тока, различают синхронные и асинхронные электродвигатели.

Синхронный электродвигатель – это двигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Существуют синхронные двигатели с дискретным углом перемещения ротора, заданное положение которого фиксируется подачей питания на соответствующие обмотки. Такой вид называют шаговыми. Также можно выделить вентильные реактивные электродвигатели, питания обмоток которых формируется с помощью полупроводниковых элементов.

Асинхронный электродвигатель – это двигатель переменного тока, в котором частота вращения ротора отличается от частоты вращения магнитного поля, которое создается напряжением питания. Моторы такого типа могут иметь разное количество фаз переменного тока. Так, однофазные запускаются вручную или пусковой. Также различают двухфазные, трехфазные и многофазные. Именно асинхронные трехфазные электродвигатели в настоящее время являются наиболее распространенными в промышленности. При отсутствии питания током с тремя фазами, могут работать от однофазной электросети, однако с меньшей мощностью и большим нагрузкам на обмотки, которые могут выйти из строя из-за перегрева.

Следует отметить, что впервые модель асинхронного двигателя предложил знаменитый изобретатель Никола Тесла в Будапеште в 1882 году.

Также существует универсальный коллекторный электродвигатель, который может работать как от постоянного, так и от переменного тока. Конструкция предусматривает только последовательное подключение обмоток, поэтому его ротор вращается только в одном направлении независимо от полярности.

Генератор

Электродвигатель может не только потреблять электроэнергию, но и производить ее. В таком случае он называется генератором электрического тока. Если на вал ротора подать обороты, то в обмотках статора возникнет электродвижущая сила. Таким образом, например, в автомобилях с двигателем внутреннего сгорания во время движения заряжается аккумулятор и снабжаются энергией другие приборы. В электромобилях и гибридах часто используется система рекуперации: когда водитель не давит на педаль газа (или тормозит), электроэнергия возвращается обратно в аккумулятор. В этом режиме не двигатель приводит в движение трансмиссию, а колеса буквально крутят ротор.

В общем, электродвигатели получили большую популярность в технике из-за таких преимуществ, как высокий коэффициент полезного действия и простота механизма. Диапазон мощности и габаритов чрезвычайно велик, что позволяет успешно использовать их как в мелких электронных приборах, так и в масштабной промышленной технике.

Электрический двигатель – так называют электрическую машину (электромеханический преобразователь энергии), в которой энергия электричества преобразуется в механическую. При этом выделяется тепло.

Принцип действия

Рабочая схема электродвигателя очень проста. В основе функционирования электрической машины существует принцип электромагнитной индукции. Электрический механизм состоит из статора (неподвижного), который устанавливается в синхронных или асинхронных машинах переменного тока или индуктора (электродвигатели постоянного тока) и ротора (подвижной части, устанавливаемого в синхронных или асинхронных машинах переменного тока) или якоря (в машине тока постоянного). В качестве индуктора на маломощном двигателе постоянного тока используются магниты.

Роторы бывают:

Короткозамкнутые

Фазные (имеющие обмотку). Применяются в случае уменьшения пускового тока и для регуляции частоты вращения асинхронного электродвигателя.

В основном, представлены крановым электродвигателем серии МТКН (который по большей части применяется в крановых установках).

Якорем называют подвижную часть машины постоянного тока (генератора или двигателя) или же функционирующего по данному принципу универсального двигателя (который часто встречается в электрических инструментах). Универсальным двигателем называют ДПТ (двигатель постоянного тока), который имеет последовательное возбуждение (когда обмотки индуктора и якоря

включены последовательно). Различие только в расчете обмоток. На постоянном токе нет реактивного (емкостного или индуктивного) сопротивления. Именно поэтому любая болгарка, если вынуть электронный блок, будет в рабочем состоянии, особенно на постоянном токе и при меньшем сетевом напряжении.

Принцип функционирования асинхронного трехфазного электродвигателя

При включении питания в статоре возникает вращающееся круговое магнитное поле. Оно пронизывает короткозамкнутую обмотку ротора и появляется ток индукции. Согласно закону Ампера (на проводник, находящийся под током, помещенный при этом в магнитное поле, действует ЭДС сила), ротор начинает вращаться.

Частота его вращения зависит от частоты напряжения, а также от числа пар полюсов магнитов. Разность между частотой вращения ротора и частотой вращения поля магнитного статора характеризуется скольжением. Электродвигатель асинхронный называется асинхронным, потому что частота вращения поля магнитного статора не совпадает с частотой ротора.

Синхронный двигатель отличается от него конструкцией ротора. Ротор в подобном двигателе выполнен либо электромагнитом, либо постоянным магнитом. Также может иметь в себе частичку беличьей клетки (для запуска). В роторе непременно содержатся электромагниты или постоянные магниты. Частота вращения поля магнитного статора в синхронном двигателе совпадает с частотой ротора. Для запуска в данной конструкции применяют ротор с обмоткой короткозамкнутой или асинхронные вспомогательные электродвигатели.

Асинхронные двигатели широко применяются во многих отраслях техники. Это особенно характерно для обычных по конструкции и трехфазных прочных асинхронных двигателей, которые имеют коротко-замкнутые роторы. Такие двигатели дешевле и надежнее обычных электрических двигателей и не нуждаются в особом уходе. Название «асинхронный» указывает на то, что в подобном двигателе ротор вращается с вращающимся полем статора не синхронно. В отсутствие трехфазной сети асинхронный двигатель включают в сеть однофазного тока.

Устройство статора асинхронного электродвигателя очень простое. Он состоит из пакета лакированных листов стали электротехнической толщиной 0,5 мм. В пазах пакета, такого же, как в синхронной машине, уложена обмотка. Статор трехфазного асинхронного двигателя имеет три фазы обмотки. Обмотка смещена на 120°. Между собой фазы соединены треугольником или звездой.

Схема двухполюсной машины

Схема двухполюсной машины выглядит очень просто. В машине содержатся четыре паза из расчета на каждую фазу. При поступлении питания на обмотки статора от трехфазной сети получается особое вращающееся поле. Это получается потому, что токи в фазах обмотки смещены в пространстве на 120° относительно друг друга и сдвинуты по фазе на 120°. При синхронной частоте вращения nc поля электродвигателя с р парами полюсов верно при частоте токов в f: nc=f/p. Так, при частоте 50 Гц получается для р = 1, 2, 3 (двух-, четырех или шести машин полюсных) получаются синхронные частоты вращения в nc = 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя состоит из листов электротехнической стали. Он может выполняться в виде ротора с контактными кольцами (фазный ротор) или короткозамкнутого ротора (с беличьей клеткой). В короткозамкнутом роторе обмотка выглядит в виде стержней из металла (бронзы, меди или алюминия). Стержни располагаются в пазах и соединяются между собой на концах особыми закорачивающими кольцами. Соединение стержней осуществляет при помощи пайки сваркой или твердым припоем. При использовании сплавов из алюминия или алюминия стержни ротора, а также закорачивающие кольца и лопасти вентилятора, располагающиеся на них, производят при помощи литья под давлением.

Прямо у ротора электрического двигателя с контактными кольцами в пазах располагается трехфазная обмотка. По внешнему виду она походит на обмотку статора, включенную звездой. Начала фаз данной обмотки соединены с тремя контактными кольцами, которые закреплены на валу. В процессе запуска двигателя можно выполнить регулировку частоты вращения. Для этого подсоединяют к фазам обмотки ротора реостаты (делается это через щетки и контактные кольца). После успешного разбега кольца контактов замыкаются накоротко. Это значит, что обмотка двигателя ротора выполняет те же самые функции, что и обмотка короткозамкнутого ротора.

Классификация электрических двигателей

По природе возникновения вращающего момента электрические двигатели делятся на магнитоэлектрические и гистерезисные. У гистерезисных двигателей вращающийся момент создается за счет гистерезиса при перемагничивании ротора. Подобные устройства считаются нетрадиционными и мало распространены в промышленности.

Самым распространенным товаром считаются магнитоэлектрические двигатели. По типу потребляемой энергии они подразделяются на две группы – двигатели тока постоянного и двигатели тока переменного. Также существуют так называемые двигатели универсальные, которые питаются обоими видами токов.

Двигатель постоянного тока

Двигателем постоянного тока называют электродвигатель, чье питание происходит за счет постоянного тока. Данный тип двигателей также принято подразделять по наличию щёточно-коллекторного узла на две группы:

Бесколлекторные

Коллекторные

Щёточно-коллекторный узел отвечает за качественное электрическое соединение цепей неподвижной и вращающейся части машины. Он является самым сложнейшим в обслуживании и ненадежным конструктивным элементом.

Коллекторные двигатели по типу возбуждения подразделяются на:

Двигатель с самовозбуждением

Двигатель с независимым возбуждением (от постоянных магнитов и электрических магнитов).

Двигатель с самовозбуждением подразделяется на:

Двигатель, имеющий параллельное возбуждение (обмотка якоря в этом случае включается строго параллельно обмотке возбуждения)

Двигатель, имеющий последовательное возбуждение (обмотка якоря в данном случае якоря включается строго последовательно обмотке возбуждения)

Двигатель, имеющий смешанное возбуждение (обмотка возбуждения в данном случае включается последовательно частично и параллельно частично обмотке якоря).

Вентильные двигатели (бесколлекторные) – это электрические двигатели, которые выполняются в виде замкнутой системы с применением датчика, определяющего положение ротора, преобразователя координат (системы управления), а также инвертора (силового полупроводникового преобразователя). Принцип функционирования подобных двигателей схож с принципом работы системы синхронных двигателей.

Двигатель переменного тока

Трехфазный асинхронный двигатель

Электродвигатели переменного тока - это электрические двигатели, питание которых осуществляется при помощи переменного тока. По принципу функционирования подобные двигатели подразделяются на асинхронные и синхронные двигатели. Принципиальное отличие заключается в том, что в синхронном двигателе первая гармоника силы магнитодвижущей статора перемещается со скоростью вращения ротора. Сам ротор перемещается со скоростью перемещения магнитного поля в статоре. У асихронного двигателя всегда присутствует разница между скоростью перемещения ротора и скоростью магнитных полей в статоре (ротор вращается медленнее поля).

Синхронный электродвигатель - это электрический двигатель тока переменного. Ротор синхронно вращается с полем магнитным питающего напряжения. Подобные устройства применяются для обеспечения больших мощностей (более сотни киловатт). Синхронные двигатели бывают с угловым дискретным перемещением ротора (так называемые шаговые двигатели). У подобных устройств положение ротора прочно фиксируется подачей питания на обмотки. Переход в иное положение осуществляется при помощи снятия напряжения питания с первых обмоток и передачи на вторые (и так далее). Помимо этого существует и еще один вид синхронного двигателя - реактивный вентильный двигатель электрический. Питание обмоток данного двигателя формируется за счет элементов полупроводниковых.

Асинхронный электродвигатель - это электрический двигатель переменного тока. Частота вращения ротора в данном двигателе существенно отличается от вращения полей магнита, которые создаются от питающего напряжения. Подобные устройства наиболее распространены.

По количеству фаз двигатель тока переменного принято подразделять на:

Однофазные электродвигатели. Запуск подобных устройств производится вручную. Они могут иметь пусковую обмотку или фазосдвигающую цепь.

Двухфазный (сюда входят и конденсаторные)

Электродвигатель трехфазный

Многофазный

Коллекторный универсальный электродвигатель – это электрический коллекторный двигатель, который может функционировать как на переменном, так и на постоянном токе. Производится с последовательной обмоткой возбуждения строго на мощности электродвигателя около 200 Вт. Статор двигателя выполнен шихтованным из особой электрической технической стали. Обмотка возбуждения полностью включается при постоянном токе и частично включается при переменном токе. Номинальные напряжения для переменного тока - 127,220, для тока постоянного номинальные напряжения- 110.220. Двигатели такого плана используются в электроинструментах и бытовых аппаратах.

Двигатель переменного тока, питающийся от промышленной сети 50 ГЦ, не может обеспечить частоту вращения более 3000 об/мин. Именно поэтому для получения высочайших частот следует использовать коллекторный электродвигатель. Такой двигатель получается меньше и легче, в сравнении с двигателем тока переменного такой же мощности. Также применяются особые передаточные механизмы, которые позволяют изменять кинематические параметры механизмов до нужных вам (так называемые мультипликаторы). При использовании преобразователей частоты или сети частоты повышенной (в 100, 200 или 400 Гц) двигатель переменного тока оказывается меньше и легче, в сравнении с коллекторным двигателем (поскольку иногда коллекторный узел занимает ½ объема). Ресурс асинхронного двигателя переменного тока выше в сравнении с коллекторным. Он определяется состоянием изоляции обмоток и подшипников.

Синхронный двигатель, имеющий датчик положения ротора и инвертор, считается электронным аналогом обычного коллекторного постоянного тока. Коллекторный универсальный двигатель считается электродвигателем коллекторным постоянного тока, имеющим последовательно включенные обмотки статора (возбуждения). Подключение электродвигателя такого типа не вызывает сложностей. Он также оптимизирован для функционирования на переменном токе электрической бытовой сети. Подобный тип двигателя вне зависимости от полярности поданного напряжения вращается строго в одну сторону. Это происходит потому, что обмотки ротора и статора соединены последовательно и смена полюсов полей магнитных данных устройств происходит одновременно, а значит, результирующий момент направлен в одну сторону. Если необходима работа на переменном токе, применяют статор из мягкого магнитного материала, имеющий малый гистерезис (малое сопротивление перемагничиванию).

Если необходимо уменьшение потерь на вихревые токи, берут наборный статор, изготовленный из изолированных пластин. Достоинством функционирования подобного двигателя считается то, что в режиме пуска и перегрузки индуктивное сопротивление обмоток ограничивает ток и максимальный момент двигателя до 5 – 3 от номинального.

Принцип его функционирования прост. Подвижная часть выполняется в виде магнитов, которые крепятся на штоке. Переменный ток электродвигателя проходит через неподвижные обмотки. Под действием этого процесса постоянные магниты перемещают шток.

Лось Анастасия
Специально для Двигатель.инфо

Принцип работы электродвигателя основан на использовании эффекта электромагнитной индукции. Само устройство предназначено для создания механической энергии за счёт использования электрических полей. Тип и мощность получаемой энергии зависят от способа взаимодействия магнитных полей и собственно устройства электродвигателя. В зависимости от типа используемого напряжения двигатели классифицируют на постоянного и переменного тока.

Электродвигатель постоянного тока

Принцип действия этих двигателей основан на использования постоянных магнитных полей, создаваемых в корпусе устройства. Для их создания служит либо постоянный магнит, закреплённый на корпусе, либо электромагниты, расположенные по периметру ротора.

Основным отличием двигателей постоянного тока является наличие в их корпусе постоянно действующего магнита, закреплённого на корпусе машины. Мощность электродвигателя зависит от этого магнита, точнее от его поля. Магнитное поле в якоре создаётся при подключении к нему постоянного тока. Но для этого необходимо, чтобы полюса постоянного магнитного поля якоря менялись местами. Для этого используются специальные коллекторно-щёточные устройства. Они устроены в виде кольца-коллектора, зафиксированного на валу движка и подключённого к обмотке якоря. Кольцо разделено на сектора, разделённые диэлектрическими вставками. Соединение сектора коллектора с цепью якоря создаётся через скользящие по нему графитные щетки. Для более плотного контакта щётки прижимаются к кольцу коллектора пружинами. Графит применяется ввиду своей скользящей способности, высокой теплопроводности и мягкости. Его применение практически не вредит проводникам коллектора.

При большой мощности электромоторов постоянного тока использование постоянного магнита неэффективно из-за большого веса такого устройства и низкой мощности создаваемого постоянным магнитом поля. Для создания магнитного поля статора в этом случае используется конструкция из ряда катушечных электромагнитов, подключённых к отрицательной или положительной линии питания. Одноименные полюсы подключаются последовательно, их количество составляет от одного до четырёх, количество щёток соответствует количеству полюсов, но, в общем, конструкция якоря практически идентична вышеописанной.

Для упрощения запуска электрического двигателя используют два варианта возбуждения:

  • параллельное, при этом рядом с обмоткой якоря включается независимая регулируемая линия, используется для плавного регулирования оборотов вала;
  • последовательное возбуждение, что говорит о способе подключения дополнительной линии, в этом случае существует возможность резкого наращивания количества оборотов или его снижения.

Нужно отметить, что этот тип моторов имеет регулируемую частоту оборотов, что достаточно часто используется в промышленности и транспорте.

Интересно. В станках используются двигатели с параллельным возбуждением, что позволяет использовать регулировку количества оборотов, в то же время для грузоподъёмного оборудования подходит последовательное возбуждение. Даже эта особенность двигателей поставлена на службу человечеству.

Электродвигатель переменного тока

Устройство и принцип действия электродвигателя переменного тока впервые описал и запатентовал физик Никола Тесла, патент Великобритании за номером 6481. Но этот мотор не получил широкого распространения из-за низких пусковых характеристик, не смог найти решение пуска. Нужно отметить, что Тесла являлся основным апологетом развития этого типа двигателей, в отличие от Эдисона, который как раз ратовал за использование сетей постоянного тока.

Именно Тесла открыл явление, которое получило название сдвиг фаз, и предложил использовать его в электродвигателе, кроме того он опытным путём определил его наиболее эффективное значение в 90°. Кроме того, знаменитый физик обосновал использование вращающего магнитного поля в многофазных системах.

Но в 1890 году инженер М.О. Доливо-Добровольский создаёт первый рабочий образец асинхронного электродвигателя с якорем «беличье колесо» и с обмоткой статора по периметру окружности. В конструкции этого изделия нашли применение, как работа Никола Теслы, так и труды других инженеров и изобретателей. Справедливости ради нужно отметить, что элементы по отдельности были изобретены раньше, М. Доливо-Добровольский только совместил их в работоспособное устройство.

Вращающее магнитное поле, энергию которого использует этот тип электромотора, возникает в тройной обмотке статора, при подключении его к источнику тока. Ротор такого двигателя представляет собой металлический цилиндр, не имеющий обмотки. Магнитное поле статора за счёт объединения в короткозамкнутую систему с ротором возбуждает в нем токи. Они вызывают создание собственного магнитного поля якоря, которое, соединившись с вихревым полем статора, вызывает вращение ротора и объединённого с ним вала двигателя вокруг своей оси.

Название асинхронный двигатель получил из-за того, что поля не синхронизированы, магнитное поле статора имеет одинаковую скорость с полем якоря, но по фазе отстаёт от него.

Для запуска асинхронного электромотора требуются довольно значительные значения пусковых токов, это заметно и в реальности – при запуске в сеть станка или другого потребителя с таким мотором свет ламп накаливания зачастую мигает из-за падения напряжения в сети. Для упрощения пуска используют фазный ротор, это устройство якоря обычно используется в высокопроизводительных электродвигателях. Фазный ротор, в отличие от обычного, имеет на корпусе три обмотки, объединённые в «звезду». В отличие от статора, они не подключены к энергоисточнику, а соединены со стартовым устройством. Подключение устройства в сеть характеризуется падением сопротивления до нулевых значений. В результате двигатель запускается ровно и работает без перегрузки. Работа такого мотора довольно сложно регулируется, в отличие от моторов постоянного тока.

Интересно. Использование электромоторов переменного тока продвигал знаменитый Никола Тесла, в то время как энергию постоянного тока – не менее знаменитый Эдисон. В результате этого между двумя известнейшими учёными возник конфликт, продлившийся до самой смерти.

Линейные электродвигатели

Для ряда устройств требуется не вращательное движение вала движка, а его возвратно-поступательное движение. Для того чтобы удовлетворить требования промышленников, конструкторами были разработаны и линейные электродвигатели. Понятно, что можно использовать для перехода вращательного движения в поступательное различные редукторы и коробки передач, но это усложняет конструкцию, делает её более дорогой, а также снижает её эффективность.

Статор и ротор такого устройства представляют собой полосы металла, а не кольцо и цилиндр как в традиционных моторах. Принцип действия электродвигателя заключается в возвратно-поступательном движении ротора, которое возможно из-за электромагнитного поля, создаваемого статором с незамкнутой системой магнитопроводов. В самой конструкции при работе генерируется движущееся магнитное поле, которое воздействует на обмотку якоря с коллекторно-щеточным устройством. Возникающее поле смещает ротор только в линейном направлении, без придания ему вращения. Мощность электродвигателя линейного типа ограничена его устройством.

Недостатком этих двигателей являются: сложность их изготовления, достаточно высокая стоимость такого оборудования и низкая эффективность, хотя и выше чем использование вращения через редуктор.

Использование электромоторов переменного тока в однофазной сети

Получить вращающееся магнитное поле статора проще всего в трёхфазной сети, но, несмотря на то, можно использовать асинхронные движки и в однофазной, бытовой сети. Требуется лишь проведение некоторых расчетов и изменение конструкции двигателя.

Формула изменений такова:

  1. Размещение на статоре движка двух обмоток: стартовой и рабочей;
  2. Включение в цепь конденсатора позволит сдвинуть по фазе ток в стартовой обмотке 90°. Практически можно сделать так: объединить обмотки трехфазного асинхронного двигателя, две обмотки в одну и установить конденсатор на это соединение.

Этот двигатель будет работать в бытовой сети, но, в отличие от двигателей постоянного тока, этот движок не регулируется по количеству оборотов, кроме того слабо переносит критические нагрузки и имеет меньший КПД. Мощность электродвигателя тоже сравнительно низка и во многом зависит от сети. Трехфазная сеть больше подходит для эксплуатации таких моторов.

В настоящее время электродвигатели широко распространены по всему миру. В числе их достоинств:

  • высокое КПД, до 80%;
  • высокая мощность двигателя при компактных размерах;
  • неприхотливость в обслуживании;
  • надежность;
  • низкие требования к энергопитанию.

Но в тоже время существует ряд проблем, которые ограничивают их более широкое распространение. Так, например, их мобильность ограничивает источники питания – в настоящее время нет достаточно мощных источников питания, которые смогли бы обеспечить длительную функциональность такого устройства. Единственным исключением из правил является атомный реактор. Гребные электродвигатели подводных лодок и кораблей имеют отличную автономность, но в то же время использование энергоносителей таких размеров невозможно в быту. Ситуацию могли бы исправить графеновые аккумуляторы, но их перспективы пока туманны.

Видео

Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации. Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения. В этой статье мы подробно рассмотрим, как работает это устройство.

Характеристики электродвигателей

Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами. Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество. Их размеры тоже варьируются от головки спички до двигателя на поездах.


Виды электромоторов

В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.

По принципу электропитания все модели можно разделить на:

  1. устройства переменного тока, которые в качестве питания используют электросеть;
  2. приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.

По механизму работы все электродвигатели разделяются на:

  1. синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
  2. асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.

Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.

Классы электродвигателей (различаются в зависимости от используемого тока) :

  • класс AC (Alternating Current) - работает от переменного источника тока;
  • класс DC (Direct Current) - использует для работы постоянный ток;
  • универсальный класс, который может использовать для работы любой источник тока.

Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.

Принцип работы агрегата на постоянном токе

Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.

Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная - статор.

Как работает асинхронный электромотор

Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.

Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.

По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.

Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов - это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.

Как работает синхронный электрический двигатель переменного тока

Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки. Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя. Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.

Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор. Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение. Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.


Самые частые поломки синхронных двигателей:

  • Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
  • Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
  • Изнашивание подшипников.

Принцип работы синхронного мотора

Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения. По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения. Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.

Механизм работы отдельных типов двигателя

Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле. Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.

Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора. Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться. По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.

Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.

Понравилось видео? Подписывайтесь на наш канал!

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяютэлектродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.