Затухающие колебания. Механические колебания


Движения, обладающие той или иной степенью повторяемости, называются колебаниями. Если колебания повторяются через равные промежутки времени, то они называются периодическими. В зависимости от физической природы колебательного процесса и «механизма» его возбуждения различают механические и электромагнитные колебания. Гармонические – это такие колебания, которые описываются периодическим законом или (1)

где – периодически изменяющаяся величина (смещение, скорость, сила и т.д.). Система, закон движения которой имеет вид (1), называется одномерным (линейным) классическим гармоническим осциллятором или сокращенно гармоническим осциллятором .

Амплитуда А, определяющая размах колебаний, равна абсолютному значению наибольшего отклонения от значения в состоянии равновесия. Аргумент синуса или косинуса называется фазой колебания, – начальная фаза. –частота колебаний, численно равная числу колебаний, совершаемых за единицу времени. Частота, при которой за 1с совершается одно полное колебание, называется герцем (Гц).Т – период – время, за которое совершается одно полное колебание.

Система, совершающая колебания, называется маятником .

Пружинный маятник имеет период , где m – масса тела, закрепленного на пружине жесткостью k . .Математический маятник – это модель, в которой вся масса сосредоточена в материальной точке, колеблющейся на невесомой и недеформируемой нити длиной . Период колебаний: . Физический маятник – образует твердое тело, подвешенное в поле тяжести на закрепленной горизонтальной оси. Период колебаний физического маятника: , где J – момент инерции маятника относительно оси, m – масса тела, – расстояние от оси до центра тяжести тела.

Свободными (собственными) называются колебания, которые происходят в отсутствие переменных внешних воздействий на колебательную систему. Они возникают вследствие какого-либо начального отклонения этой системы от состояния ее устойчивого равновесия.

Рассмотрим смещение x колеблющегося тела относительно положения равновесия, то есть . Начало отсчета времени выберем так, чтобы =0. Уравнение гармонического колебания: , причем А и w – величины постоянные.

Первая производная от по времени дает выражение для скорости движения тела: ; (2)

Уравнения (2) показывают, что скорость, как и смещение, изменяются по гармоническому закону с той же частотой w, но ее фаза отличается от фазы смещения на p/2, то есть когда =0, то .

Ускорение изменяется со временем также по гармоническому закону:

, (3)

где – максимальное значение ускорения. Фаза ускорения отличается от фазы смещения на p, а от скорости на p/2. Из (3) следует. что значение ускорения в процессе колебательного движения равно:

Таким образом, при гармоническом колебательном движении ускорение тела прямо пропорционально смещению от положения равновесия и имеет противоположный ему знак. Уравнение (4) можно переписать в виде: (5)

Это и есть дифференциальное уравнение гармонических колебаний. Если изменяется со временем согласно формуле (1), то оно удовлетворяет дифференциальному уравнению (5). Верно и обратное утверждение.

Реально свободные колебания под действием сил сопротивления всегда затухают . Пусть точка совершает линейное гармоническое колебание в вязкой среде. При малых скоростях: , где r – постоянная величина, называемая коэффициентом сопротивления среды. Уравнение колебаний: . Введем обозначения: , тогда дифференциальное уравнение затухающего колебания: (6)

где – коэффициент затухания, w 0 – собственная частота колебания. При отсутствии трения =0, уравнение примет вид уравнения для свободных незатухающих колебаний. В результате решения уравнения (6) получим зависимость смещения х от времени, то есть уравнение затухающего колебательного движения:

Выражение называется амплитудой затухающего колебания. Амплитуда уменьшается с течением времени и тем быстрее, чем больше коэффициент затухания. Огибающая на графике зависит от . Чем она больше, тем круче огибающая, то есть колебания быстрее затухают.

Путем подстановки функции (2) и ее производных по времени в уравнение (1), можно найти значение угловой частоты: . Период затухающих колебаний равен: .

Наглядной характеристикой затухания является отношение значений двух амплитуд, соответствующих промежутку времени в один период. Это отношение называют декрементом затухания : Его логарифм есть безразмерная величина, называемая логарифмическим декрементом затухания:

Колебания системы, которые совершаются за счет работы периодически меняющейся внешней силы, называются вынужденными.

Пусть на систему действует внешняя сила, меняющаяся со временем по гармоническому закону: , где F 0 – амплитуда силы (максимальное значение), w – угловая частота колебаний вынуждающей силы. Тогда уравнение движения будет иметь вид.

Тема 17 Затухающие и вынужденные колебания

1 Затухающие колебания. Величины их характеризующие.

2 Вынужденные колебания.

3 Резонанс.

Основные понятия по теме

При наличии в системе диссипативных сил амплитуда колебаний убывает с течением времени. Такие колебания принято называть затухающими колебаниями . Формально это означает, что в уравнение движения тела, совершающего свободные колебания, при описании затухающих колебаний, необходимо добавить слагаемые учитывающие диссипативные силы. В первом приближении величину этих сил принято считать пропорциональной скорости движения тела. В этом случае уравнение движения пружинного маятника (16.1) принимает вид

где коэффициент сопротивления.

Разделив обе части уравнения (17.1) на , перепишем его в виде

. (17.2)

В выражении (17.2) введены общепринятые обозначения собственная частота колебаний и коэффициент затухания.

Решение уравнения (17.2) имеет вид

Здесь частота затухающих колебаний, их начальная фаза. Функция описывает убывание амплитуды затухающих колебаний с течением времени. График зависимости смещения частицы из положения равновесия приведен на рисунке 17.1. Из вида приведенного графика следует принципиальный вывод – затухающие колебания являются негармоническими . Следовательно, величины используемые ранее для описания свободных колебаний, при описании затухающих колебаний непригодны. Исключение составляет только начальная фаза колебаний , так как она определяет начальные условия возбуждения колебаний и не связана с их дальнейшим поведением во времени.

Затухающие колебания принято характеризовать следующими величинами:

время релаксации колебаний. Время релаксации затухающих колебаний – это время, в течении которого их амплитуда уменьшается в раз;

коэффициент затухания, который характеризует диссипативные силы в системе. Коэффициент затухания связан с временем релаксации очевидным соотношением

и, следовательно, имеет размерность ;

декремент затухания. Декремент затухания показывает, во сколько раз амплитуда затухающих колебаний убывает за время одного полного колебания, то есть

; (17.5)

логарифмический декремент затухания; (17.6)

добротность колебательной системы, характеризующая ее энергетические потери за время одного полного колебания. Добротность

, (17.7)

где энергия, запасенная в системе в момент времени , потери энергии за время одного полного колебания.

Введенные выше понятия полностью характеризуют затухающие колебания, то есть описывают поведение кривых представленных на рисунке 17.1 в зависимости от времени. Обратное утверждение также является верным. Имея график зависимости , полученный экспериментально, можно определить все вышеназванные величины характеризующие затухающие колебания.

В реальных ситуациях затухание колебаний является неизбежным, но вредным явлением. Устранить его проявления в рассматриваемой колебательной системе можно, если в число сил, под действием которых происходят колебания, дополнительно включить вынуждающие силы, приводящие к компенсации потерь энергии в колебательной системе. Из основного условия, содержащегося в определении колебаний, «повторяемость во времени» следует, что вынуждающая сила должна иметь периодический характер

. (17.8)

В выражении (17.8) амплитуда вынуждающей силы, ее частота.

При добавлении вынуждающей силы в уравнение движения (17.1), последнее, приобретая внешний вид

, (17.9)

одновременно приобретает и качественно новое математическое свойство. В отличие от уравнений (16.1) и (17.1) уравнение (17.9) является неоднородным дифференциальным уравнением. Установившиеся вынужденные колебания описывает только частное решение неоднородного дифференциального уравнения (17.9), которое имеет вид

Из (17.10) следует, что вынужденные колебания, так же как и свободные, являются гармоническими. Однако они отличаются от свободных колебаний рядом особенностей. Во первых, как ясно из выражения (17.10), частота вынужденных колебаний равна частоте вынуждающей силы, то есть вынуждающая сила навязывает колебательной системе свою частоту. Во вторых, амплитуда вынужденных колебаний

Затуханием колебаний называют уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой (например, превращение энергии колебаний в теплоту вследствие трения в механических системах). Затухание нарушает периодичность колебаний, потому они уже не являются периодическим процессом. Если затухание мало, то можно условно пользоваться понятием периода колебаний – Т (на рисунке 7.6 А 0 – начальная амплитуда колебаний).

Рисунок 7.6 – Характеристики затухающих колебаний

Затухающие механические колебания пружинного маятника происходят под действием двух сил: силы упругости и силы сопротивления:

где r – коэффициент сопротивления.

Воспользовавшись уравнением второго закона Ньютона, можно получить:

или

Разделим последнее уравнение на m и введем обозначение или

где β коэффициент затухания, тогда уравнение примет вид

(7.20)

Данное выражение и есть дифференциальное уравнение затухающих колебаний. Решением этого уравнения является

Отсюда следует экспоненциальный характер затухающих колебаний, т.е. амплитуда колебаний убывает по экспоненциальному закону (рисунок 7.6):

(7.22)

Относительное уменьшение амплитуды колебаний за период характеризуется декрементом затухания, равным

(7.23)

или логарифмическим декрементом затухания:

(7.24)

Коэффициент затухания β обратно пропорционален времени τ в течение которого амплитуда колебаний уменьшается в e раз:

т.е. (7.25)

Частота затухающих колебаний всегда меньше частоты собственных колебаний и может быть найдена из выражения

(7.26)

где ω 0 частота собственных колебаний системы.

Соответственно период затухающих колебаний равен:

Или (7.27)

С увеличением трения период колебаний возрастает, а при период .

Для получения незатухающих колебаний необходимо воздействие дополнительной переменной внешней силы, которая подталкивала бы материальную точку то в одну, то в другую сторону и работа которой непрерывно бы восполняла убыль энергии, затрачиваемой на преодоление трения. Такая переменная сила называется вынуждающей F вын, а возникающие под ее действием незатухающие колебания – вынужденными .

Если вынуждающая сила изменяется в соответствием с выражением, то уравнение вынужденных колебаний примет вид

(7.28)

(7.29)

где ωциклическая частота вынуждающей силы.

Это дифференциальное уравнение вынужденных колебаний . Реше­ние его может быть записано в виде

Уравнение описывает гармоническое колебание, происходящее с частотой, равной частоте вынуждающей силы, отличающееся по фазе на φотносительно колебаний силы.

Амплитуда вынужденного колебания:

(7.30)

Разность фаз между колебаниями силы и системы находится из вы­ражения

(7.31)

График вынужденных колебаний приведен на рисунке 7.7.

Рисунок 7.7 – Вынужденные колебания

При вынужденных колебаниях может наблюдаться такое явление, как резонанс. Резонанс это резкое возрастание амплитуды колебаний системы.

Определим условие, при котором наступает резонанс, для этого рас­смотрим уравнение (7.30). Найдем условие, при котором амплитуда при­нимает максимальное значение.

Из математики известно, что экстремум функции будет, когда про­изводная равна нулю, т.е.

Дискриминант равен

Следовательно

После преобразования получаем

Следовательно резонансная частота.

В простейшем случае резонанс наступает, когда внешняя периоди­ческая сила F меняется с частотой ω , равной частоте собственных колеба­ний системы ω = ω 0 .

Механические волны

Процесс распространения колебаний в сплошной среде, периодический во времени и пространстве, называется волновым процессом или волной .

При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передается лишь состояние колебательного движения и его энергия. Поэтому основным свойством волн, независимо от их природы, является перенос энергии без переноса вещества .

Выделяют следующие типы волн:

Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. В любой упругой волне одновременно существуют два вида движения: колебание частиц среды и распространение возмущения.

Волна, в которой колебания частиц среды и распространение волны происходят в одном направлении, называется продольной , а волна, в которой частицы среды колеблются перпендикулярно направлению распространения волны, называется поперечной .

Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформациях сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. в твердых телах. Таким образом, в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

Упругая волна называется синусоидальной (или гармонической), если соответствующие ей колебания частиц среды являются гармоническими.

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ .

Длина волны равна расстоянию, на которое распространяется волна за время, равное периоду колебаний:

где – скорость распространения волны.

Так как (где ν частота колебания), то

Геометрическое место точек, до которых доходят колебания к моменту времени t , называется волновым фронтом . Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью .


Дата21/12/12

урока : 33

Тема : Затухающие и вынужденные колебания. Резонанс.

Цель урока : объяснить, почему большее значение имеют вынужденные колебания, а не свободные; как устанавливаются вынужденные колебания; когда наступает резкое возрастание амплитуды и возникает резонанс;

Задачи:

    Образовательная обеспечить знания учащимися понятия свободных и вынужденных колебаний; объяснить, значение вынужденных колебаний; установить происхождение вынужденных колебаний, возникновение резонанса.

    Развивающая развитие понятие применения и вреда приносимым резонансом в природе; развитие образного мышления колебательных процессов в природе; формировать умение работы с книгой.

    Воспитывающая – воспитание сознательного и серьезного отношения к учебной дисциплине. Формирование взглядов на развитие природы колебательных процессов и связи с окружающим миром. Воспитание интереса к предмету

Тип урока: урок формирование новых знаний

Методы: словесный, лекция, демонстрационный, объяснительно-иллюстративный

Виды деятельности учащихся: работа с учебником, самостоятельная работа с учебником.

План урока:

    Изучение новой темы.

    Дом задание § 28, упр. 23

    Итоги урока. Организация рефлексии.

Ход урока:

    Орг. момент (приветствие, проверка готовности к уроку, мотивация учебной деятельности, настрой учащихся).

    Актуализация имеющих необходимых знаний.

    Проверка домашнего задания методом индивидуального опроса.

    Что называется механическими колебаниями? (Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени.)

    Назовите основные характеристики механических колебаний (Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период.)

    Что является смещением? (Смещение - это отклонение тела от положения равновесия.)

    Что называется амплитудой колебаний? (Амплитуда - модуль максимального отклонения от положения равновесия.)

    Что называется частотой колебания? (Частота - число полных колебаний, совершаемых в единицу времени.)

    Что называется периодом колебаний? (Период - время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса.)

    Как связаны между собой период и частота колебаний? (Период и частота связаны соотношением: ν = 1/Т)

    Как происходит преобразование энергии в колебательных системах без трения?

    Как силы сопротивления действуют на колеблющееся тело?

    Какие колебания являются затухающими?

    Изучение новой темы.



Вынужденные колебания пружинного маятника.


Рассмотрим, как в колебательной системе, обладающей собственной частотой возникают и поддерживаются вынужденные колебания. Если вращать рукоятку установки, то на тело начнет действовать периодическая внешняя сила. Тело будет раскачиваться с увеличивающейся амплитудой. Через некоторое время, колебания будут иметь установившийся характер, амплитуда перестанет увеличиваться. Частота колебаний груза будет равна частоте вращения рукоятки (частоте изменения внешней силы).

    Превращение энергии при механических колебаниях .

Рассмотрим процесс превращения энергии на примере колебаний груза на нити (рис 10).

При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня,

следовательно, в точке А маятник обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mυ 2 /2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергии.

При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными . Например , родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины.

Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела . Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.

При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает . Такое явление называют механическим резонансом. Графически зависимость амплитуды вынужденных колебаний от частоты действия внешней силы показана на рисунке 11.

При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

    Резонанс (от латинского слова resonans –дающий отзвук)

Пользуясь все той же установкой, проверим, как зависит от частоты внешней силы амплитуда установившихся колебаний. Амплитуда начинает расти при дальнейшем увеличении частоты внешней силы. Она достигает максимума, если свободные колебания груза будут действовать в такт с внешней силой. Амплитуда стремится к нулю, если частота внешней силы очень большая.

Вследствие, инертности тело не успевает смещаться и «дрожит на месте».

Зависимость амплитуды от внешней частоты представлена на рисунках .

Р
езонансом
называется резкое увеличение амплитуды вынужденных колебаний при совпадении частоты свободных колебаний с частотой изменения внешней силы.

    Применение резонанса и борьба с ним . Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены. Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы. Поэтому, например, двигатели в автомобилях устанавливают на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».

    Закрепление. Самостоятельная работа с учебником.

«Применение резонанса и борьба с ним»

Подготовить ответы на вопросы.

1. Какие тела, сооружения, машины представляют собой колебательную систему?

2. Насколько может увеличиться амплитуда, работающей машины?

3. Какие меры предпринимают, чтобы резонанс не наступил или хотя бы ослабить его?

4. Почему строевой шаг воинской части может привести к разрушению моста, через который часть переходит?

5. Привести примеры полезного действия резонанса.

Вопросы для закрепления.

    Какие колебания называются вынужденными? (Колебания, происходящие под действием внешней периодической силы).

    Как происходят вынужденные колебания, под действием каких сил? (Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения.)

    Чем отличаются вынужденные колебания от свободных? (В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно.)

    Чему при этом равна полная энергия колебательной системы? (Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.)

    Как зависит частота вынужденных колебаний от частоты вынуждающей силы? (Частота вынужденных колебаний равна частоте вынуждающей силы.)

    Что мы называем явлением резонанса? (В случае, когда частота вынуждающей силы υ совпадает с собственной частотой колебательной системы υ 0 , происходит резкое возрастание амплитуды вынужденных колебаний - резонанс. )

    Из-за чего возникает явление резонанс? (Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и амплитуда его колебаний становится большой.)

    Какую роль играет явление резонанса?. (Явление резонанса играет большую роль в ряде природных, научных и производственных процессов.)

    Приведите примеры явление резонанса. (Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.)

    Домашнее задание: § 28, упр. 23

    Итоги урока.

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Так как энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (рис. 53; х - смещение, t - время). Когда вся энергия колебания перейдет в теплоту, колебание прекратится (затухнет). Такого рода колебания называются затухающими.

Для того чтобы система совершала незатухающие колебания, необходимо восполнять извне потери энергии колебания на трение. Для этого надо воздействовать на систему периодически изменяющейся силой

где амплитудное (максимальное) значение силы, круговая частота колебаний силы, время. Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынуждающей силой, а колебания системы - вынужденными. Очевидно, что вынужденные колебания происходят с частотой, равной частоте вынуждающей силы. Определим амплитуду вынужденных колебаний.

Для упрощения расчета пренебрежем силой трения, полагая, что на колеблющееся тело действуют только две силы: вынуждающая и возвращающая Тогда, согласно второму закону Ньютона,

где - масса и ускорение колеблющегося тела. Но, как было показано в § 27, Тогда

где смещение колеблющегося тела. Согласно формуле (9),

где - круговая частота собственных колебаний тела (т. е. колебаний, обусловленных только действием возвращающей силы). Поэтому

Из уравнения (22) следует, что амплитуда вынужденного колебания

зависит от соотношения круговых частот вынужденного и собственного колебаний: при будет В действительности благодаря трению амплитуда вынужденных колебаний

остается конечной. Она достигает максимального значения в том случае, когда частота вынужденных колебаний близка к частоте собственных колебаний системы. Явление резкого возрастания амплитуды вынужденных колебаний при называется резонансом.

Используя резонанс, можно посредством небольшой вынуждающей силы вызвать колебание с большой амплитудой. Подвесим, например, карманные или ручные часы на нити такой длины, чтобы частота собственных колебаний полученного физического маятника (рис. 54) совпала с частотой колебаний балансира часового механизма. В результате часы сами начнут колебаться, отклоняясь от положения равновесия на угол а 30°.

Явление резонанса имеет место при колебаниях любой природы (механических, звуковых, электрических и др.). Оно широко используется в акустике - для усиления звука, в радиотехнике - для усиления электрических колебаний и т. п.

В некоторых случаях резонанс играет вредную роль. Он может вызвать сильную вибрацию конструкций (зданий, опор, мостов и т. п.) при работе установленных на этих конструкциях механизмов (станков, моторов и т. п.). Поэтому при расчете сооружений необходимо обеспечивать значительное различие между частотами колебаний механизмов и собственных колебаний конструкций.

В технике распространен еще один вид незатухающих колебаний - так называемые автоколебания, отличающиеся от вынужденных тем, что у них потери энергии колебания восполняются за счет постоянного источника энергии, вводимого в действие на очень короткие промежутки времени (в сравнении с периодом колебаний). Причем этот источник «включается» в нужные моменты времени автоматически самой колебательной системой. Примером автоколебательной системы может служить часовой маятник. Здесь потенциальная энергия приподнятого груза (или деформированной пружины) вводится в действие посредством анкерного механизма. Другим примером может служить замкнутый колебательный контур с электронной лампой; с действием этой автоколебательной системы мы познакомимся позже (см. § 112).